<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<meta name="Generator" content="Microsoft Word 14 (filtered medium)">
<style><!--
/* Font Definitions */
@font-face
{font-family:"Cambria Math";
panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
{font-family:Calibri;
panose-1:2 15 5 2 2 2 4 3 2 4;}
@font-face
{font-family:Tahoma;
panose-1:2 11 6 4 3 5 4 4 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{margin:0in;
margin-bottom:.0001pt;
font-size:12.0pt;
font-family:"Times New Roman","serif";}
a:link, span.MsoHyperlink
{mso-style-priority:99;
color:blue;
text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
{mso-style-priority:99;
color:purple;
text-decoration:underline;}
span.EmailStyle17
{mso-style-type:personal-reply;
font-family:"Calibri","sans-serif";
color:#1F497D;}
.MsoChpDefault
{mso-style-type:export-only;
font-family:"Calibri","sans-serif";}
@page WordSection1
{size:8.5in 11.0in;
margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
{page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
</head>
<body lang="EN-US" link="blue" vlink="purple">
<div class="WordSection1">
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D"><o:p> </o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;font-family:"Calibri","sans-serif";color:#1F497D"><o:p> </o:p></span></p>
<p class="MsoNormal"><b><span style="font-size:10.0pt;font-family:"Tahoma","sans-serif"">From:</span></b><span style="font-size:10.0pt;font-family:"Tahoma","sans-serif""> miniworkshop-bounces@mailman2.u.washington.edu [mailto:miniworkshop-bounces@mailman2.u.washington.edu]
<b>On Behalf Of </b>Kotaro Ono<br>
<b>Sent:</b> Monday, February 25, 2013 11:07 AM<br>
<b>To:</b> miniworkshop@u.washington.edu<br>
<b>Subject:</b> [Fisheries Think Tank] Cole Monnahan and Jim Thorson, Feb 27th, 3:30-5pm, FSH106<o:p></o:p></span></p>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal">Hi all!<br>
<br>
Cole Monnahan (UW-SAFS) and Jim Thorson (NOAA-NWFSC) will be our next Think Tank speaker and they
<br>
will be talking on Wednesday February 27th, from 3:30-5:00pm in<b> <span style="color:red">
Fish 106</span></b> about:<br>
<br>
"Next-generation MCMC: theory, options, and practice for Bayesian inference in ADMB"<br>
<br>
If you’d like to attend remotely, please use Meeting ID #627-931-861,<br>
by going to <a href="http://www.GoToMeeting.com">www.GoToMeeting.com</a>, clicking “Join a Meeting,” and<br>
entering the Meeting ID number. For additional information, please<br>
consult the document on the Think Tank website (see below).<br>
<br>
The current schedule for the Winter 2013 series is posted at the Think<br>
Tank website (<a href="http://fish.washington.edu/news/miniworkshop/index.html">http://fish.washington.edu/news/miniworkshop/index.html</a>).<br>
<br>
If you wish to subscribe/unsubscribe from this mailing list, you can<br>
do so by visiting<br>
<a href="https://mailman2.u.washington.edu/mailman/listinfo/miniworkshop">https://mailman2.u.washington.edu/mailman/listinfo/miniworkshop</a> and following<br>
the directions. There is also now a link to add a Google Calendar for<br>
the Think Tank series, available on the Think Tank website.<br>
<br>
Thanks,<br>
<br>
Kotaro<br>
<br>
<br>
Abstract:<br>
Bayesian inference is a powerful framework for analysis and relatively simple to implement in ADMB. The Metropolis MCMC algorithm is typically efficient, however the posterior surfaces for some models present challenges and the standard method is highly ineffective
and convergence extremely slow. In this mini-workshop we will detail the theory and application of the suite of tools available to ADMB users for conducting Bayesian analyses. We begin by reviewing the Metropolis algorithm currently implemented by ADMB for
MCMC chains, including the –mcrb and –mcgrope runtime options. Building on this knowledge we detail how an analyst can force ADMB to use any covariance matrix and demonstrate the advantage of this approach on the notoriously difficult Schaefer model and a
simple four parameter age-structured whale model. Moving beyond the standard Metropolis algorithm, there are two next-generation MCMC methods immediately available to the user: (1) the Metropolis-coupled MCMC (MCMCMC) and (2) the “hybrid” method. The theory
of these two methods will be discussed and their application demonstrated. <o:p>
</o:p></p>
</div>
</body>
</html>