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Abstract

We discuss how generic interfaces to the Laplace approximation for fitting
hierarchical spatial models can be constructed. The goal is to hide the tech-
nical details of computation, but leave the user with flexibility in model
formulation. As an example we explain how the SPDE approach of Lindgren
et al. (2011) can easily be implemented in the interface to the open source
software AD Model Builder. Flexibility is needed not only in the model for
spatial correlation, but also in the response distribution. Using a standard
dataset we find that the introduction of a discrete mixture for the response
improves the fit much more than does changing the parametric assumptions
about the correlation function. This phenomenon can be expected to be
common in practice, and underlines the need for flexibility in all aspects of
model formulation. We contrast the user interface of AD Model Builder with
the more familiar interface of R packages.

Keywords: Automatic differentiation, ADMB, empirical Bayes, Gaussian
Markov random fields, hierarchical models, Laplace Approximation.

1. Introduction

Gaussian random fields are important building blocks in hierarchical mod-
els for spatial data (Banerjee et al., 2003). Their use facilitates both com-
putation and interpretation. The assumption that the latent random vari-
ables are Gaussian allows the use of the Laplace approximation to evaluate
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a marginal likelihood on which inference about the (hyper) parameters can
be based (Skaug and Fournier, 2006). It was argued in Rue et al. (2009) that
the Laplace approximation can offer substantial computational advantages
over standard MCMC methods. However, implementing such computational
schemes from scratch requires skills that most users of spatial statistics do
not possess. It is thus important that generic implementations of the Laplace
approximation exist, ones that hide the technical details of computation, but
offer access to model fitting functions through a simplified interface. The
nature and construction of such interfaces is the topic of the present paper.

The open source software R (R Development Core Team, 2012) con-
tains many packages (functions) capable of fitting hierarchical spatial models.
Among the most flexible and versatile of these is R-INLA (Rue et al., 2009)
which is based on the Laplace approximation for evaluating the marginal like-
lihood. In R-INLA the interface between the user and the Laplace approx-
imation is an R function. The model is formulated in a flexible generalized
linear model framework, where the linear predictor can contain spatial com-
ponents among other things. Although R-INLA gives access to large array of
response distributions and correlation structures, it necessarily restricts the
set of models that can be fitted. In the present paper we point out advantages
and disadvantages of a restricted interface, and contrast it with more flexible
interfaces based on a numerical technique known as automatic differentiation
(Griewank and Walther, 2008). Automatic differentiation (AD) is gradually
finding its way into statistical practice, partly through software packages such
as AD Model Builder (Fournier et al., 2012), Stan (Stan Development Team,
2013) and Ceres Solver (Agarwal and Mierle, 2013).

For a fixed value of the parameters the Laplace approximation of the
marginal likelihood involves the determinant of the Hessian matrix H of
the log posterior distribution of the latent random field, appropriately dis-
cretized. Evaluating analytic expressions for these second order derivatives
of the log posterior will often be an obstacle to the implementation of the
Laplace approximation. It was shown by Skaug and Fournier (2006) that
automatic differentiation, not to be confused with symbolic differentiation or
’finite differences’, can make numerical evaluation of H transparent, given
computer code for the joint likelihood of parameters and latent random vari-
ables. Skaug and Fournier (2006) made their argument more generally for
models containing latent random variable, and in the present paper we point
out the specifics that applies in the spatial setting.

Recently, Lindgren et al. (2011) derived the computationally efficient

2



SPDE approximation to Gaussian random fields with a Matern covariance
function. The approximating model is Markov on a mesh which includes
the points of observations as nodes. We show that very flexible hierarchical
spatial models, with an SPDE based latent random field, can be fit easily in
the open source software AD Model Builder (Fournier et al., 2012), which
among other things implements the ideas from Skaug and Fournier (2006).
The SPDE mesh, along with a set of matrices needed to build the precision
matrix for the SPDE approximation, is imported from R-INLA. We use the
Leukemia dataset studied by Lindgren et al. (2011) as an example to moti-
vate the need for a flexible, but still fairly simple, interfaces to the underlying
Laplace approximation.

Section 2 outlines the methodological components in our approach, in-
cluding a description of the ADMB user interface. In Section 3 different
models for spatial correlation and response distributions are fitted to the
Leukemia data, and Section 4 contains a comparison of advantages and dis-
advantages of the ADMB user interface, relative to the more familiar interface
of R packages.

2. Methodology

2.1. Hierarchical spatial models

We consider a vector of spatially referenced observations y = (y1, . . . , yn),
where each yi is associated with the spatial location si ∈ R2, i = 1, . . . , n.
Next, we postulate the existence of a zero mean Gaussian random field
X = {x(s) : s ∈ R2} influencing the distribution of y via its values
x = {x(s1), x(s2), . . . , x(sn)} at the locations of observation. Hence, x has
a zero mean multivariate Gaussian distribution with covariance matrix Σ,
say, which is induced by the correlation structure of the continuously in-
dexed random field X. Beyond this fact, X does not play any particular
role in present paper, although it does play a crucial role in the derivation
of the underlying SPDE approach of Lindgren et al. (2011). To foresee the
use of the SPDE approach we will augment x with a set of “support point”
x(sn+1), x(sn+2), . . . , x(sm), so that the total dimension of x is m.

It is often assumed that the yi are conditionally independent given the
xi, i.e.

pθ(y|x) =
n∏
i=1

pθ(yi|xi) (1)
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and this will be the case in the example in Section 3 below. However, condi-
tional independence is not needed for the general theory nor for the ADMB
software, so we make no special provision in our notation. Both Σ and the
conditional density of y will depend on parameters, and we shall write Σθ

and pθ(y|x), respectively, where θ denotes a parameter vector. Typically,
but not necessarily, Σ and p depend on different subsets of θ. In a typi-
cal application yi, conditionally on xi, is taken to have one of the standard
distributions: Gaussian, binomial, Poisson, or Weibull as in the Leukemia
example of Section 3.

The marginal likelihood,

L(θ) = pθ(y) =

∫
pθ(y|x)N(x; 0,Σθ) dx, (2)

is the basis for maximum likelihood estimation of θ, where N(x; 0,Σ) denotes
the zero mean multivariate Gaussian density with covariance matrix Σ. The
computational challenge in all latent variable models, and in spatial statistics
in particular where m typically is large, is the integration over x ∈ Rm.
In practically all but the Gaussian case this integral cannot be evaluated
analytically and one is forced to resort to numerical evaluation. Among the
non-sampling based approximations, the Laplace approximation is the one
in most widespread use (references). It also underlies both software packages
R-INLA and ADMB.

2.2. Laplace approximation and AD

The basis for the Laplace approximation is the log joint density of x and
y, given by

g(x,y; θ) = log {pθ(y|x)} − m

2
log(2π) +

1

2
log |det (Qθ)| −

1

2
x′Qθx, (3)

where Qθ denotes the m × m matrix inverse of Σθ Here, we focus on the
computational aspects of the Laplace approximation. For other properties
and its derivation see Butler (2007). The log likelihood approximation is
given as

l∗(θ) = −1

2
log |det (Hθ)|+log {pθ(y|x̂θ)}+

1

2
log |det (Qθ)|−

1

2
(x̂θ)

′Qθx̂θ, (4)

where
x̂θ = arg max

x
g(x,y; θ) (5)
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and

Hθ =
∂

∂x2
g(x,y; θ)|x=x̂θ

=
∂

∂x2
log {pθ(y|x)}|x=x̂θ

−Qθ. (6)

It was shown in Skaug and Fournier (2006) that the matrix of second order
derivatives on the right hand side in (6) can be evaluated numerically by AD
from specification of log {pθ(y|x)}. This is implemented in ADMB which,
given C++ code log {pθ(y|x)} and Qθ as input, estimates θ by maximizing
l∗(θ). The flexibility referred to in the title of this paper refers partly to
the fact that AD hides the technical details of the Laplace approximation.
ADMB also evaluates the gradient of l∗(θ) using third order AD and the
implicit function theorem (Skaug and Fournier, 2006). The use of an exact
gradient value makes ADMB a numerically stable software.

We next turn to the question of the cost of evaluating the Laplace ap-
proximation (4). At first, we shall disregard the cost of evaluating p (y|x)
and its derivatives. If the matrix Q (and hence H) is not sparse, the cost
of evaluating (4) for large m is dominated by that of evaluating det (H) and
det (Q), which both are O (m3). This becomes prohibitive on ordinary com-
puters once m gets in the order of some thousands. If on the other hand Q
and H are sparse matrices specialized numerical algorithms exists which can
handle much larger values of m. As was shown in Lindgren et al. (2011) the
SPDE approach yields a sparse Q and thus is computationally efficient.

Under the assumption (1) we have

∂

∂x2
log {pθ(y|x)} =

n∑
i=1

log {pθ(yi|xi)} ,

allowing AD to be applied separately to each term log {pθ(yi|xi)}, which in
principle involves only a single variable xi. However, to get the gradient of
l∗(θ) one still has to do the differentiation of each term jointly with respect
to θ and xi, but this nevertheless represents a great simplification relative
to differentiating log {pθ(y|x)} jointly with respect to θ and x (Skaug and
Fournier, 2006).

2.3. The SPDE approach

The starting point for the SPDE approach is a stationary and isotropic
Gaussian random field with a Matern correlation function. The Matern class
of correlation functions has two parameters, but as pointed out by Lindgren
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et al. (2011) one of the parameters (υ in their terminology) is often poorly
identified in applications. We hence consider the one-parameter class of
isotropic correlation functions,

C(s1, s2) = κ ‖s1 − s2‖K1 {κ ‖s1 − s2‖} , (7)

where s1 and s2 are arbitrary spatial locations, ‖s1 − s2‖ denotes Eucledian
distance, κ is a scaling parameter and K1 is the modified Bessel function
of the second kind of order 1. The precision matrix Q based on (7) is not
sparse, and is hence not well suited for applications where n is large. The
key insight from Lindgren et al. (2011) is that by augmenting the vector x
by properly chosen elements a sparse approximation to Q can be obtained.

We here present the theory of Lindgren et al. (2011) from a computa-
tional perspective, and leave out details related to the finite element so-
lution of the stochastic partial differential equation (SPDE) representation
of the random field. In the terminology of Lindgren et al. (2011) we fix
υ = 1 and have dimension d = 2, such that the characterizing parameter
becomes α = d/2 + υ = 2. The Matern field then has correlation function
given by (7) and marginal variance σ2 = (2πκ2)−1. Our starting point is
that we seek an approximation of the precession matrix Q(0) for the vector
x(0) = {x(s1), x(s2), . . . , x(sn)} associated with locations where observations
are made. This is done by obtaining a sparse approximation Q for an aug-
mented vector x = {x(s1), x(s2), . . . , x(sn), x(sn+1) . . . , x(sm)}. As explained
in Lindgren et al. (2011) the extra points sn+1, . . . , sm are part of a finite el-
ement mesh used to solve the SPDE. By definition of x the upper left n× n
quadrant of Q−1 is an approximation to the covariance matrix of x(0). In
practice one never forms Q(0) or its inverse explicitly. The model is cast in
terms of the augmented quantities Q and x, but it is only the first n elements
of x that enters into pθ(y|x).

The R-INLA function inla.mesh.create evaluates the finite element
mesh, including determining the extra mesh locations sn+1, . . . , sm. The
function inla.spde2.matern returns three sparse matrices, M0, M1 and M2,
which do not depend on κ and which are used to build the sparse precision
matrix

Qκ = κ4M0 + 2κ2M1 +M2. (8)

The correlation function (7) is monotonically decreasing as a function of
‖s1 − s2‖ . Lindgren et al. (2011) also derives the approximation of Q for an
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oscillating version of (7). The expression is given by

Qκ,ρ = κ4M0 + 2 cos(ρπ)κ2M1 +M2, (9)

where ρ ∈ [0, 1] is the parameter controlling the amount of oscillation.

2.4. The ADMB user interface

An example of an ADMB program is given in Figure 1. A preprocessor
is used to convert the program to C++ code, which in turn is compiled by
an ordinary C++ compiler and linked to libraries containing the routines
for performing AD. The program consists of three sections corresponding to
the following fundamental tasks: 1) reading data from file 2) specification
of parameters to be estimated 3) specification of the joint log likelihood (3).
Under 1) a variety of useful data structures, including ragged arrays, are
available. An R package R2admb exists that allows the user to read and
write the data files used by ADMB.

Under 2) (PARAMETER SECTION) the vector x is specified as a random effects vector.
This informs the preprocessor that x is the target from the Laplace approx-
imation. The following line, sparse quadratic prior Q(x), associates x
with a sparse matrix Q which must be specified in a separate function (not
shown in Figure 1). The PARAMETER SECTION has two additional useful fea-
tures. It allows the specification of bounds on the parameters in the numerical
optimization of the likelihood, and it allows the user to activate parameters
in different “phases” (not show in Figure 1). For models of the type consid-
ered in the present paper it is a good strategy to use a least two phases. In
the first phase components of θ associated with the random field x are kept
fixed at their initial values, while the likelihood is maximized with respect to
the other elements of θ. During the first phase there is no reason to perform
the expensive Laplace approximation, so x̂ = 0 can be inserted in (4) and
the last two terms need not be evaluated. In the second phase all compo-
nents of θ are estimated, starting out with the values obtained in the first
phase, with the Laplace approximation now activated. The virtue of this ap-
proach is that the first phase, where no Laplace approximation is performed,
is computationally much less expensive than the second. Depending on how
complicated the response distribution p (y|x) is, one may choose to split the
first phase into multiple phases with easily identified parameters being esti-
mated first. The Laplace phase may also be split, where as an example, one
could first estimate κ with ρ = 0 being fixed in (9).
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Under 3) (PROCEDURE SECTION) the user specifies log pθ (y|x) and Q. Be-
cause the model shown in Figure 1 has the conditional independence struc-
ture (1) this can be done in a loop where the i’th call to the function
ll weibull() evaluates log pθ (yi|xi). It is through a call to the function of
type SEPARABLE FUNCTION that ADMB detects how to run the AD machin-
ery only on the relevant parameters, xi and θ, for each likelihood component
log pθ (yi|xi). Recall that the need for differentiating with respect to θ as well
as xi stems from the fact we are also calculating the gradient of the likelihood
approximation.

ADMB represents the sparse matrix Q = {qjk, j, k = 1, . . . ,m} in triplet
format, in which only non-zero elements are stored, and each non-zero ele-
ment is stored as (qjk, j, k). Because of symmetric only the upper diagonal
of Q needs to be stored. The sparse matrices M0, M1 and M2 occurring in
(8) are conveniently output from R-INLA in sparse triplet form, so in the
ADMB program one evaluates (8) by manipulating matrices in sparse triplet
format (not shown in Figure 1). This task of explicitly writing code for (8)
could easily be hidden from the user.

The flexibility of the ADMB user interface stems from the fact that the
likelihood is specified in C++ code. There is hence no limitation to the set of
response distributions the user may apply. For a given response distribution,
one can always try a finite mixture of such distributions. If the mixture
model gives a better fit one may be able to do more accurate inference also
about the spatial part of the model. In the opposite case, i.e. the mixture
does not improve the fit, the exercise serves as goodness of fit check of the
original assumption about the response distribution. Code for a mixture
model is provided in Figure 2. Further, it is not a requirement that each
call to ll weibull() uses only a single xi. However, the presence of both
xj and xk in a call to ll weibull() will cause Qjk 6= 0, so the sparsity of
Q will decrease and likewise the benefit from using sparse matrix routines.
Below some degree of sparsity it will be computationally advantageous to use
ordinary numerical linear algebra.

A second aspect of flexibility of the user interface is the specification of
Q in C++ code. The expression for Q can be specified freely in terms of
as many parameters (subset of θ) as wished. In the anisotropic correlation
function referred to above Q depends on covariates and associated regression
parameters γ. Further, it is straight forward to write C++ functions for
performing Kronecker products of matrices in triplet form, which simplifies
formulation of separable space time models.
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3. The Leukemia data

As an example we use the data set on spatial variation in leukemia sur-
vival in Northwest England which as been used by several authors, including
Lindgren et al. (2011) as the first illustration of their SPDE approach. The
dataset consists of n = 1043 observations (m = 1749 nodes elements in x in
total), each of which involves the survival time and a censoring indicator for
a leukemia patient, together with a spatial reference. We take as our start-
ing point the same model as used in Lindgren et al. (2011). It is assumed
that the (fully observed) survival time y of a patient follows a Weibull dis-
tribution with shape parameter α and scale parameter λ. If the observation
is censored, i.e. the patient left the study for reasons other than death, the
likelihood contribution is exp (−λyα), while in the case that the time of death
is observed (uncensored patient) the likelihood contribution is

λαyα−1 exp (−λyα) .

Covariates and the spatial effect enters the model via λ using a GLM
framework with linear predictor

log(λ) = [intercept+ sex+ age+ wbc+ tpis] + τ−1x(s), (10)

where the term in square brackets is expressed in Wilkinson–Rogers notation
(McCullagh and Nelder, 1989, sec 3.4).

The ADMB program (slightly abbreviated) used to fit the model is shown
in Figure 1. We found it necessary to make the design matrix associated with
the covariate terms inside the square brackets in (10) orthogonal in order to
improve the convergence of the numerical optimizer. The resulting regres-
sion parameters (β’s) were subsequently back transformed to their original
scale. Also, we found that the “inner optimization” (5) could be evaluated
accurately using four Newton-Raphson steps starting from x = 0. In situa-
tions where the (unscaled) log posterior (3) differs more a quadratic function,
ADMB will by default use a quasi-Newton algorithm to evaluate (5).

Parameter estimates are given in Table 1 as the “Basic model”. As a com-
parison empirical Bayes point estimates obtained from R-INLA (int.strategy=’’eb’’)
are also given. The ADMB and R-INLA results should hence be directly com-
parable, except that R-INLA uses a non-informative prior on θ. This prior
does not seem to affect the maximum likelihood estimate of θ much, though,
so the discrepancies observed in the table are most likely due to differences

9



in the function optimizers used in the two packages. R-INLA shows a slight
sensitivity to starting values for the optimization process, while ADMB is nu-
merically stable to four digits. In an attempt to quantify the extent of spatial
variation, a model without the spatial component was fitted. It is seen from
Table 1 that maximum likelihood estimates based on log pθ (y|x = 0) alone
reduces the log likelihood by 11 units. Hence, the spatial components of
the model is clearly preferred by the AIC criterion, despite having two extra
parameters (κ and τ).

The different extensions of the Matern model described in Lindgren et al.
(2011) were tried. The oscillating correlation model (9) gave a log likelihood
increase of 1.44 at the cost of one extra parameter (ρ), and is barely preferred
by the AIC criterion, but not by a standard likelihood ratio test. However,
the estimated value ρ̂ = 0.91 has a rather dramatic effect on the shape of the
estimated correlation function (Figure 3), and also increase the estimate of τ
by a factor of three, which is rather drastic. Next, an anisotropic model was
obtained by regressing τ on spatial coordinates, i.e. τ(s) = τ exp(γ1s

(1) +
γ2s

(2)), where s = (s(1), s(2)) denotes the (normalized) coordinates of a spatial
location. This model is just selected by the AIC criterion, and the inclusion
of anisotropy has some effect on the estimate of κ. In total, oscillation and
anisotropy are not very important elements of the model for this dataset.

Lindgren et al. (2011) used this dataset as an illustration of the compu-
tational aspects of their technique, and did not consider alternatives to the
Weibull distribution. As our goal is to illustrate the importance of a flexible
interface between the user and the computational machinery, we fit a mix-
ture of two Weibull distributions to the data. Under the mixture model, the
density of a fully observed survival time is assumed to be

pmixλαy
α−1 exp (−λyα) + (1− pmix)λ2αy

α−1 exp (−λ2yα) , (11)

where λ2 = cλ, so that c > 1 and pmix ∈ (0, 1) are additional parameters
to estimated. It is seen from Table 1 that the mixture model improves the
fit by 41 units on a log-likelihood scale. Hence, the assumption about the
observation mechanism is far more important than the spatial correlation
structure. Also, allowing more flexibility in the response distribution affects
the estimate of spatial variation. The marginal standard deviation of x(s)/τ
is σ = (2πκ2τ 2)−1/2 which is estimated to be σ̂ = 0.39 for the basis model (fit
by Lindgren et al.) and σ̂ = 0.25 for the mixture model. Also, the correlation
distance, as measured by κ−1, increases by 18%.
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Table 1 also give the computation time (in seconds) for each of the models.
The computation time is seen to increase with model complexity as expected.

4. Discussion and conclusion

We have demonstrated that a flexible interface to the Laplace approxi-
mation for hierarchical spatial models can be based on AD (automatic dif-
ferentiation). However, increased flexibility usually comes at the expense
of increased complexity, and an important question is whether the user in-
terface presented in Figure 1 is conceived as “complex” by users. As the
sparse quadratic prior is new, and not part of the standard ADMB dis-
tribution (but available upon request from the authors) we do not have any
actual data on this. However, the random effects vector statement have
been part of ADMB for almost 10 years, so for that we have a much experi-
ence dealing with prospective ADMB users from various scientific fields. A
clear piece of evidence that the code in Figure 1 is indeed conceived as being
complicated is provided by the R package glmmADMB, which is an R inter-
face to ADMB code for fitting zero inflated and over dispersed count models.
Since its introduction in 2005 a large number of people has used glmmADMB,
and from time to time, users have requested functionality, such as a particular
link function, that is not part of glmmADMB. They have been encouraged to
modify the underlying ADMB code, which consists only of 500 lines of code
of the type shown in Figure 1, but very few of the users of glmmADMB have
ever taken the step to modify the underlying ADMB code. This seems to
indicate that the ADMB interface is found difficult by the general user of R.
We postulate that it is the need build up a joint log-likelihood (g) from an
hierarchical description of the model that is the prohibitive factor for users
without a particularly strong background in statistics and probability. This
view is supported by the fact that the Monte Carlo based software Win-
BUGS (Lunn et al., 2000), which also has a flexible user interface, has got
widespread use in the wider scientific community. WinBUGS allows the user
to formulate hierarchical models by assigning distributions to variables in a
notation that is intuitive to users. Further comparison of the user interfaces
of WinBUGS and ADMB can be found in Bolker et al. (2013).

The user with experience in programming, and with a training in statis-
tics and probability, usually does not find the ADMB user interface difficult.
Within this group one finds developers of R packages, and we expect that
in the future people will develop mixed model software in R, which calls an
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ADMB program that performs the actual model fitting and subsequently re-
turn the results to R. This is advantageous from the developer’s perspective,
as the infrastructure for doing function optimization and Laplace approxi-
mation is generically available in ADMB. This allows the number of code
lines needed to implement an R package, such as glmmADMB, to be kept
low, which is clearly desirable from a software maintenance perspective.

The above considerations also apply to spatial hierarchical models. R
packages such as R-INLA, with a user interface that is easy to grasp for
people with experience in R, will always attract a larger number of users
than a program with a user interface as presented in Figure 1. However,
in this paper we have tried to argue that flexibility is needed in statistical
practice. Within the ADMB framework, the burden of building and exploring
alternative response distributions, say, is put on the user, as ADMB itself only
provides generic infrastructure to build and fit hierarchical models. Extra
flexibility can of course always be added to R packages, but then the burden
of extending the model is put on the developer of the R package, not on the
user requesting the extra flexibility.

An important part of the “generic infrastructure” referred to above is au-
tomatic and efficient calculation of the gradient of the log likelihood. Most
model fitting routines, in R and in other statistical software, that are based
on maximizing/minimizing an objective function do not calculate the gradi-
ent. As it is well known that the presence of a gradient greatly facilitates
the optimization process one must conclude that it is technical difficulties
that prevent package developers from evaluating the gradient. In hierarchi-
cal models, where the Laplace approximation is utilized, evaluation of the
gradient is especially complicated, as (4) and (5) constitute a nested opti-
mization problem. One can hence expect even fewer package developers to
take the burden of evaluating the gradient. Our notion of useful “generic
infrastructure” is not limited to the gradient, but includes features such as
functionality for fitting the model in stages (“phases”) as discussed earlier.

We have presented the Laplace approximation, in combination with AD,
as a generic way of evaluating the marginal likelihood (2) in hierarchical mod-
els with continuous latent random variables. It is well know that the Laplace
approximation can be inaccurate in some situations, such as in models with
binary responses, where the data often contain relatively little information
about each individual latent random variable. It was argued by Skaug and
Fournier (2006) that one fairly easily can modify the machinery underlying
the Laplace approximation to perform (adaptive) importance sampling, and
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still be able to obtain the gradient of the likelihood approximation by AD.
Implementation of such methods are somewhat technical in nature, and are
in our opinion best hidden behind a software interface.

Development of generic statistical software has a strong sociological com-
ponent, in that the developer has to imagine how the user will conceive the
user interface. WinBUGS is a success story in this respect, with the develop-
ers starting out from general principles, and with users in various field at a
later stage discovering new ways of applying the software. The range of prob-
lems to which WinBUGS has been applied is so broad that the WinBUGS
developers could not possible have seen its full extent early on.

There do exist instances in the literature where the Laplace approxima-
tion in combination with AD has been used to fit spatial hierarchical models
(Kristensen, 2009; Bravington and Hedley, 2009). However, as these authors
authors have primarily developed their software for personal use, they have
not provided a well documented user interface. Otherwise, comparison to
ADMB with respect to interface and computational speed would have been
interesting.

Spatial models are playing an increasingly important role in statistical
practice, a trend that is fueled by the development of better computational
techniques. The discussion in this section has been rather general in na-
ture, but applies strongly to spatial hierarchical models because they are
computationally challenging. For instance, in the field of ecology people are
indeed applying hierarchical spatial models for individual analyses, but the
standard software packages used by most practitioners do not incorporate
a fully hierarchical spatial component of the type described in the present
paper. Examples include line transect analysis (Thomas et al., 2009) and
capture-recapture analysis.

Our conclusion is that that the Laplace approximation, made available
through a flexible and generic interface, will make spatial hierarchical models
available to a much larger group of researchers. We have given one example
of what this interface may look like, and we hope that the presence ADMB
can inspire other researchers to develop alternative interfaces.
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Table 1: Parameter estimates for different models fit to the Leukemia example of Lindgren
et al. (2011, sec. 2.4). Results for the basis model (fit by Lindgren et al.) are given
for both ADMB and R-INLA (with option int.strategy=’’eb’’) for comparison. R-
INLA is run with its empirical Bayes option (int.strategy=’’eb’’). Standard deviations
(parentheses) are only shown for the basis model. Log-likelihood deviances for all ADMB
fits are shown relative to the basis model. Run times for ADMB are given in seconds.

Lindgren et al. No. spat. Oscilat. Anisotr. Mixture

R-INLA ADMB
β0 -5.5405 -5.6877 (0.2314) -5.4204 -5.6648 -5.6917 -9.0451
βsex 0.0702 0.0715 (0.0693) 0.0672 0.0665 0.0670 0.1331
βage 0.0321 0.0326 (0.0023) 0.0300 0.0324 0.0328 0.041
βwbc 0.003 0.0031 (0.0005) 0.0029 0.0031 0.0031 0.0052
βtpi 0.0244 0.0249 (0.0099) 0.0251 0.0251 0.0242 0.041

τ 0.0956 0.0851 (0.0450) 0.3136 0.0997 0.1789
κ 10.5717 12.605 (6.162) 11.438 13.74 8.9815
α 0.5789 0.5956 (0.0163) 0.5753 0.5926 0.5969 0.7489
ρ 0.9067
pmix 0.1579
cmult 9.4953
γ1 0.3896
γ2 -1.7741
Deviance 0.0 -10.86 1.44 2.12 41.19
Run time 31 0.12 68 59 46
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Figure 1: ADMB program for fitting the Lindgren et al. (2011) model to the Leukemia
data. The code has been slightly simplified, with a few larger code omissions denoted
by “...”. As in standard C++ a “//” marks the beginning of a comment extending
to the end of the line. The number of code lines in the full program is 124 (excluding
blank lines). In DATA SECTION an init defines an object to be read from file, while in
PARAMETER SECTION an init indicates a parameter. Dimensions and parameter bounds
are specified in parenthesis.

DATA_SECTION

init_int n // Number of observations

init_vector y(1,n) // Response (survival time)

init_ivector notcens(1,n) // Cencoring indicator (values = 0,1)

init_ivector meshidxloc(1,n) // Pointers into x (latent r.v.’s)

init_int n_p // # columns in X

init_matrix X(1,n,1,n_p) // Desing matrix

... // Makes X orthonormal

... // Read M0, M1, M2.

PARAMETER_SECTION

init_vector beta(1,n_p) // Regression parameters

Regression parameters

init_bounded_number log_tau(-3.0,-1.0) // log(tau)

init_bounded_number log_kappa(2.0,3.0) // log(kappa)

init_bounded_number alpha(0.1,10.0)

random_effects_vector x(1,n) // GMRF vector

sparse_quadratic_prior Q(x) // Assciates Q with x

objective_function_value g // Negative log likelihood

PROCEDURE_SECTION // Where g is evaluated

for (int i=1;i<=n;i++) // Loop over observations

ll_weibull(i,beta,alpha,log_tau,x(meshidxloc(i)));

... // Evaluates Q from M0, M1, M2.

SEPARABLE_FUNCTION void ll_weibull(i,...) // Weibull log likelihood

tau = exp(log_tau);

eta = X(i)*beta + x(i)/tau; // X(i) is i’ row

lambda = exp(eta); // Scale parameter

y_alpha = exp(log(y(i))*alpha); // Temporary variable

S = mfexp(-lambda*y_alpha); // Survival funciton

f = lambda*alpha*y_alpha/y(i)*S; // Probability density

if(notcens(i))

g -= log(f); // Adds ll contribution to g

else

g -= log(S); 17



Figure 2: Extension of Figure 1 with ADMB code needed to implement the two component
Weibull mixture model (11). Only additions to Figure 1 are shown, and as before // marks
the beginning of a comment (standard C++).

PARAMETER_SECTION

init_bounded_number p_mix(.0001,.999) // Mixture probability

init_bounded_number mult(1.0,30.0) // c in (11)

SEPARABLE_FUNCTION void ll_weibull(i,...)

S1 = exp(-lambda*t_alpha); // Survival function 1

S2 = exp(-mult*lambda*t_alpha); // Survival function 2

S = p_mix*S1 + (1.0-p_mix)*S2; // Marginal survival

f1 = lambda*alpha*t_alpha/y(i)*S1; // Density 1

f2 = mult*lambda*alpha*y_alpha/y(i)*S2; // Density 2

f = p_mix*f1 + (1.0-p_mix)*f2; // Marginal density

if(notcens(i))

g -= log(f); // Adds ll contribution to g

else

g -= log(S);

Figure 3: Histogram of observed pairwise distances in the Leukemia data overlaid by the
fitted correlation functions for the basis model (ρ = 0) and the oscillating correlation
function (ρ̂ = 0.91). The vertical axis is common to the histogram and the two correlation
functions. Distances have been normalized so the horizontal axis does not have a unit.
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