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This paper presents a new approach to length-frequency analysis which takes account of
biological structure in the mean lengths and standard deviations in length for various age-classes
of fish. The new methods help determine biologically meaningful solutions, even when earlier
methods lead to an ambiguous set of competing solutions. The structure of the standard devia-
tions turns out to be especially important. For describing the means, new parameters are defined
for von Bertalanfly growth which prove to have greater biological meaning and numerical
stability than L, X, and ;. These new parameters can often be estimated easily from the raw
data in cases where the species experiences a slowing of growth with age. This paper also pre-
setits x* methods which can be used to rank competing solutions, although the results are not
definitive. All methods are illustrated using data previously published for pike and abalcne.
An appendix describes in detail the computer programs required for the analysis.
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maximum likelihood estimation, nonlinear estimation
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L’approche nouvelle de P'analyse Jde fa fréquence des tongueurs présentée dans cet article
tient compte de fa structure biologique dans les longueurs moyennes et dans les écarts types de
longueur chez diverses classes d’age de poissons. Ces nouvelles méthodes aident ¥ trouver des
solutions biologiquement significatives, méme quand d’autres méthodes ont donné un en-
semble ambigu de solutions opposées. Particulierement importante est la structure des écarts
types. De nouveaux parametres de croissance de von Bertalanffy sont utilisés pour décrire les
moyennes et s’avérent biologiquement plus significatifs et numérignement plus stabes que
L., K et to. Souvent, ces nouveaux parametres sont facilement estimés a partir des données
brutes dans les cas ol 'espece subit un ralentissement de croissance avec I’age. On trouvera
également dans cet article un exposé de méthodes de X2 pouvant servir & classer des solutions
opposées, sans toutefois qu'on ait de résultats définitifs. Toutes ces méthodes sont illustrées
par des données déja publiées sur le brochet et I'ormeau. Les programmes d’ordinateur néces-
saires a I’analyses sont décrits en détail en appendice.
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IN studying a fish stock, the biologist frequently tries
to determine three basic characteristics, namely, (1)
the mean length at each age, (2) the distribution of
lengths, and (3) the distribution of ages. Clearly these
characteristics are related. For example, if the mean
length at age and the length distribution are both
known, then something can be said about the age dis-
tribution. This principle underlies the use of age-length
keys.

Usually the distribution of fish lengths is the easiest
—icharacteristic of the three to ascertain. One need only
ﬁtake a suitably large random sample of the stock and
©measure the length of each fish in it. By contrast, the
2other two characteristics may be very difficult to deter-
Omine, because they involve knowing the ages of fish in
1pa sample. For this reason attempts have been made to
osuse the length distribution alone to detcrmine both the
KJage distribution and the mean length at age.

B‘ Such methods date back to Petersen (1892), who
cused length—frequency modes in a population of
™~Zoarces viviparus to identify distinct age-groups. An
_é'lntercsting reproduction of Petersen’s key figure appears
€in Ricker (1975, p. 204); one can see immediately how
Odistinct length clusters visually suggest distinct ages.
About the same time, Pearson (1894) developed the
sfirst statistical treatment of the problem of overlapping
S&mponent distributions, although his method applied
 the case of two components only and did not easily
%neralize. For practical reasons, modern computers
Odle necessary to implement a general statistical proce-
E&ire for distinguishing an arbitrary number of over-
pping component distributions. Hasselblad (1966}
@;st described such a method in detail and developed
Etye necessary computer program. However, workers in
OHsheries research have primarily favored the graphical
~'-émethods of Harding (1949) and Cassie (1954). In a
recent departure from this tradition, Macdonald and
OPitcher (1979) show how some variations of Hassel-
gblad’s statistical technique can be applied to fish stocks.
OAlso, McNew and Sommerfelt (1978) discuss dif-
'ficulties which may occur when the distribution of
'Slengths at each age is not normal as Hasselblad assumes.
. The principal motive for length—frequency analysis
§has usually been to determine the distribution of ages
Oof fish. For management purposes, it is important to
-know the age composition to predict the status of the
@stock in future years. However, as stated earlier, the
L analysis also gives information on the length at age. The
“interested worker may then go on to construct growth
®curves, say of the von Bertalanffy type. This has always
been viewed as a separate problem. First, one might use
the method of Cassie to find mean lengths at age; then,
second, one might determine an appropriate growth
curve. These have been considered separate issues, with
a distinct procedure for each case.

This paper presents a new point of view in which
these two previously separate issues become one. A
single procedure applied to length—frequency data gives
both the age composition of the stock and the parame-
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ters for growth. More explicitly, the procedure uses
length—frequency data to determine the percentage of
fish at each age, as well as parameters which define the
mean length and standard deviation in length at each
age. For example, three von Bertalanfly parameters
(such as L., K, t,) might be determined which define
a growth curve through the mean lengths.

Aside from giving growth data along with the usual
age composition analysis, the new procedure has at
least one further advantage over those used previously.
It helps eliminate ambiguity. Most workers who try
Cassie’s method of plotting the cumulative frequency
on probability paper soon discover that the location of
inflection points (which serve as breaking points be-
tween age-groups) can be quite ambiguous. Also, each
time one makes an ambiguous choice, that choice per-
petuates itself into the determination of further inflec-
tion points. This difficulty is somewhat circumvented
by Hasselblad’s statistical procedure, but not entirely.
Even Hasselblad’s method may give rise to many com-
peting solutions, particularly when the number of age-
groups is large and older fish with different ages have
similar lengths. Macdonald and Pitcher deal with such
problems by invoking ad hoc constraints on some of
the parameters, especially the standard deviations. In
this paper, we explore different constraints, motivated
biologically. Instead of allowing arbitrary mean lengths
and standard deviations in length as Hasselblad does,
our procedure requires that the means and/or standard
deviations should conform to a growth pattern. For
many species this is reasonable because, for example,
the growth rate slows as the fish mature and, conse-
quently, the mean lengths are related to each other
in some way.

A general conclusion from this argument is that
more biological structure leads to less ambiguity. Un-
constrained methods may give many possible solutions
to the same problem. By requiring that population
characteristics (such as mean lengths at age) must bear
some relationship to one another on biological grounds,
one can perhaps eliminate a significant number of pos-
sible solutions and focus immediately on a restricted
number which are of biological interest. Although em-
phasis is placed on von Bertalanffy growth, other re-
lationships among population characteristics (for ex-
ample, between standard deviations and means) will
also be introduced. In all cases, the underlying prin-
ciple remains the same, namely, introducing biological
structure into the statistical model to locate solutions
of biological interest. In each application the research
biologist may wish to tailor the model according to his
own view of the biological characteristics of the stock.

One final point should be clarified before the analysis
begins. The terms “age distribution” and “length dis-
tribution” apply throughout to a stock which has been
randomly sampled. That population may be a stock at
sea, but more often it is the total population of caught
fish. If random samples are taken from the commercial
catch and the gear is selective for certain ages or sizes
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of fish (as it almost always is), then, of course, the
population at sea has not been randomly sampled. At
best the results can speak for the hypothetical popula-
tion of catchable fish, or, more simply, the entire catch
itself. If inferences are to be made about a stock at sea,
then the biologist may need to take samples with spe-
cial noncommercial gear, or he may have to compen-
sate his results from the commercial catch in some way
to allow for gear selectivity.

von Bertalanffy Growth

Before introducing the structure of biological growth
—into the statistics of length—frequency, it is useful to
Otake a fresh look at what is implied by von Bertalanffy
Ogrowth. Suppose that the fish population being con-
ossidered has M age-classes from age a; to ay;, where the
Xith age is

N~
O1) a=a+i—1; i=1,,..
o

06/22/14

S M.

';Lct u; be the mean length of fish at age a;. Then, if
gthese means lie on a curve of the type proposed by von
8Berta1anﬁy (1938),

gﬁ'(z) gy = Lo(l — e~KGate));  i=1,...

1 this equation, L~ is the theoretical length which fish
Sgbproach as they grow older, K relates to the fraction
which the gap between current length and asymptotic
5Bngth is reduced cach year, and ¢, is the age at which
‘Elgh length extrapolates back to zero along the curve.
'8 As Ricker (1975) points out in connection with the
%mrk of Ford (1933) and Walford (1946), equation

£2) implies that
59
;:k'&)
_8Conscquently, the distance between two successive

omean lengths shrinks each year to the fraction
c

4 k=eK
%( ) €

ez = pter = € Klug — ).

Oof its former size. This reduction corresponds to a slow-

‘ping in growth; as the fish get older, the change in mean
.length from one year to the next becomes smaller.

8 The idea behind equation (3) can be used to formu-

Clate a new version of the von Bertalanffy growth equa-
‘tion. Suppose that the first and final mean lengths g,

‘@and py, are known. Call them / and L, respectively. Then

L from (1)-(2)

-

() = Lol — eK@i~to),
© (6) L = L(l — e B(a+tM=i~t0),

According to (3)-(4), the remaining means, from pu,
to py_1, must lie between / and L so that each year the
incremental growth g, . ; — u; shrinks to the fraction k
of its previous value. There is only one way to arrange
the remaining means in this fashion. For example, if
k = 1, the means must be equally spaced between I and
L. If k %= 1, it turns out that
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1 — kit
(7 l‘:zi'i"(L_[)l,.kMﬂ;

i=1,... .M.
This result is proved in Appendix A.

Equations (2) and (7) are mercly two expressions
for the same curve with differcnt choices of parameters;
(2) uses L+, K, t,, while (7) uses /, L, k. Also, (4)—(6)
gives the transformation from the first set of parame-

ters to the second. The reverse transformation is given
by

L — lka
®  Le=1"7mw

9) K= —logk,

aA0) fo = 11o(L"")
) to= @ OB T T )

The parameter set (I, L, k) is much more appro-
priate to length—frequency analysis than (L«, K, #y).
The biologist actually knows both the shortest and
longest observed lengths. In practice /, the mean length
of the youngest fish, lies somewhat above the shortest
observed length; similarly L lies somecwhat below the
longest observation. Typically, the mean lengths cluster
near L for older fish, while mean lengths for younger
fish are more spread out, leaving noticeable peaks.
Suppose that the biologist can formulate an opinion
on the first and last means, / and L, as well as at least
one further mean g; for some age @; (i 7 1 or M). Then
these values of /, L, and g; can be substituted into (7),
and the resulting equation can (in principle) be solved
for k. Unfortunately, it is not possible to express
analytically a general solution for % in equation (7):
however, a few trial values of & will suggest a first
estimate. In practice, the biologist may have an epinion
about several mecan lengths other than / and L. Again,
the principle of trying a few k values usually leads to a
reasonable first estimate.

In summary, it is not too difficult in many cases to
obtain first estimates of I, L, and k which are biologically
meaningful. The parameters / and L are based on ob-
servations near the shortest and longest lengths in the
sample. Information on k then comes from an esti-
mate of one or more means other than the first and
last. Conceptually, k represents the fixed fraction by
which the annual growth increment is multiplied each
vear. A choice of &k near 1 implies almost uniform
growth so that the means are spaced almost evenly be-
tween [ and L. On the other hand, a choice of & near 0O
implies that the annual growth decreases each year to a
small fraction of its former size. Consequently, the first
increment in mean length is relatively large, while the
mean lengths of older fish tend to cluster near L.

By contrast, the significance of L., K, and ¢, is not
always obvious and sometimes even deceptive. For ex-
ample, it is tempting to suppose that L. corresponds
roughly to the longest observed length, or a little be-
yond. However, if k is ncar 1 and the means are almost
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evenly spaced, then L. may lie far beyond the observed
range. If k is near O, then L» is approximately equal to
L by (8). Since L is the highest mean length, it lies
below the longest observed length, and, consequently,
so might L. in this case. There have also been dif-
ficulties with the interpretation of K and ¢,. As Ricker
(1975, p. 221) points out, “it is misleading to refer to
K as a growth rate” because K actually measures the
exponential rate of approach to asymptotic size. The
< parameter K does not involve the units of length; a
Ispecies may grow rapidly in cm/yr and still be char-
Qacterlzed by a small value of K. Also, since #, is
Gtheoretically the age at which fish have length 0, it is
< difficult to understand biologically why ¢, is not always
(3 exactly 0. This problem, of course, is merely an artifact
W which results {rom extending the curve beyond the
mrange of the data; however, it is still difficult to grasp
intuitively what a reasonable value of t, might be for
IS a particular data set.
,Q' Some of the problems just cited have led to con-
> troversy in the literature. For example, Knight (1968)
Lshows that the interpretation of L. as an asymptotic
glenath may lead to complete nonsense. The point is
Cthat the nonsense stems not from the mathematics, but
gfrom the biological interpretation commonly placed on
Sthe results. The parameters I, L, and k merely sum-
O-E‘arize observed facts about the data. By contrast, L,
£, and 1, have been used as indicators of fundamental
ologlcal characteristics of the fish. Such interpreta-
fons are almost always purely speculative; they may,
§s Knight points out, be wrong.
% In this description of von Bertalanffy growth, em-
asis has so far been placed on the mean length for
€ &ach age. Of course, fish of the same age do not always
ve the same length; if they did, length—frequency
analysis would be trivial. Associated with each mecan
Qlength ; is a standard deviation in length o;. Just as
Othe means might conform to a growth relationship, so
Salso the standard deviations might be prescribed by
Osome rule. For example, the standard deviations might
—.be a linear function of the means; that is,
ﬁ(n) o= (S -

. Sci.

i=1,...,M;

qu

<_where s and § are the standard deviations o4 and oy
Lfor ages a; and ay, respectively. Alternatively, the o’s
iT might be a linear function of the ages; that is,

- i—1
L%5(12) o =S+(S~S)M_ T

A special case of both (11) and (12), obtained when
== § is the situation of constant standard deviation

(A3) oy =s; i=1,...M

Notice that (7) and (11) taken together imply that

1 — fit

(M) =5+ (S = D50

Pl M
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Conscquently, in this case, the parameters s, §, and &
play a role for the ¢’s similar to that of I, L, and &
for the p’s. In analogy with the means, the standard
deviations lie between s and § in such a way that the
gap between two successive o’s shrinks each year to the
fraction k of its former size. If k = 1, the ¢’s are equally
spaced between s and S as described by (12).

In summary, there is a logical organization to the
possibilities (11) to (14) for the o’s. Equation (13)
is a special case of (12), which, in turn, is a special
case of (14). Also, (14) is equivalent to (11) when
the means conform to von Bertalanffy growth.

The parameters s and § are not completely analogous
to [ and L in one significant respect. While it is always
true that [ < L, it may happen as in (13) that s = §, or
even s > §. Many factors may contribute to size varia-
tion among fish of one age. If these factors accumulate
so that shorter fish fall farther behind and longer fish
tend to do better, then it is rcasonable that s < §. On
the other hand, it may happen that younger fish ex-
perience considerable variability in growth rate, while
older fish tend to reach a limiting size. In this case, as
the animals grow older, the small ones tend to catch up,
rather like children approaching adulthood. Conse-
quently, s > § because an initially large size range nar-
rows with age. The special case s = S might occur when
the tendencies to each extreme just balance.

ELength-Frequency Statistics

To describe the statistics of length~frequency sam-
pling, it is nccessary to extend the notation of the pre-
vious section. In a population with M age classes, let
ki o and o, be, respectively, the mean length, standard
deviation in length, and percentage (or fraction) of
fish at age a; (i == 1, ..., M). Suppose that fish are
sampled randomly from this population and that the
length of each fish is determined to lie in one of the N
intervals

(= w/2, %+ w/D);
where
x;=x1+{— Dw
is the midpoint of the jth interval and every interval
has width w.
Assume that fish lengths are distributed normally

in each age-group. Then, given that a fish has age a;,
the probabiiity that its length lies in the jth interval is
xj+w/3 [

15) q = f w'—‘»(x~m)z]dr
g o’iﬂ; ]““w/2 : Iy o

Herc the integral (15) defines a section of area under
a normal curve. Details for its numerical calculation are
given in Appendix C. Suppose that a total frequency f
of fish are sampled. Then the expected frequency of
fish having length in the jth interval is

j=1L..,N;

_ M
a6) f; —-—fg;l T G4je
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TaBLe 1. Notation summary in logical order.
Classification Notation Description
Age descriptors i Index for age
a; ith age
M Number of age-classes
Length descriptors J Index for length
Xy Midpoint of jth interval
< w Width of each interval
g N Number of length intervals
% Population parameters M Mean length at age a
o 7y Standard deviation in length at age g;
5 ™ Fraction (%) of fish at age a;
~ I, L k von Bertalanffy parameters for u’s
& s, S Parameters for ¢’s
] P Total number of population parameters
Lo
N Sample size f Number of fish sampled
'\ 2 . .
© Observations fi Observed frequency in jth interval
,9 r Small number of observations (integer)
> N, Number of intervals with f, >r
g g, Observed total from intervals with f, >r
3 Expectations qy Probability of jth length, given age a;
) ) Expected frequency in jth interval
@ g Expected total from intervals with f; > r
%‘ = Measure of closeness A Separation statistic
5 Measure of fit B, x? statistic
@ D df
b >
c8 . - .
gn this sum the product «; times g;; represents the over- to A as “twice the Kullback minimum discrimination
%@Il probability that a fish has both age a; (probability information statistic.”! For reference, the notation used

%) and a length in the jth interval (probability qii)-
O,_@ince a fish with specified length must come from one
+= of the age-groups, these probabilities are then summed
B over the ages to give the expected probability for each
B length interval. In other words, (16) merely states that
< the expected number of fish in each length interval is
= the sum of expected numbers broken down by age.
D When a sample is taken, of course, the observed
. frequency of fish with lengths in the jth interval (call
it j]) does not, in general, equal the expected frequency
w® (f;). This is true because the observation ]‘j includes
UStallSth‘ll sampling error. In practlce since the popula-
< tion parameters (such as u’s, ¢’s, and =’s) are not
£ known, the expected frequencies are also unknown. The
iT problem is to determine a set of population parameters
— which would lead to expected frequencies as close as
- possible to those observed. This requires a criterion for
O “closeness.” In this paper, closeness is measured by the
separation statistic

m

N . ~
(amn 4= ZjZl filog (f;/f)
The expected frequencies are said to be as close as pos-
sible to the observations when A is minimal. The sig-
nificance of this particular criterion will be discussed
shortly. It has been suggested previously for this ap-
plication by Macdonald and Pitcher (1979), who refer

here is summarized in Table 1.

To understand exactly how this criterion might be
applied, notice from (15) that g;; depends on y; and
oy; in symbols,

Gij = Guj{pys o9).

Conscquently, the expected frequency f; depends on the
w’s and o’s, as well as the #’s. In symbols, from (16},

M
f}(M,S, G',Sa ”,S) = / {Z 77"[‘11.1'(“{’ ‘TZ)'
=1
Substituting this result in (17) gives
N . .
A’s, o’s, m's) = 2 3 filoglf;/fiu's, o's, 7°s)].
j=1

In short, if a set of observed frequencies f; which total f
are given, that is,

N .

18 X =1
j=1

‘There is no clear precedent for a name for 4. Rao
(1973; p. 352) refers to a similar statistic as the “Kullback—
Liebler separator.” Macdonald and Pitcher get their refer-
ence to 4/2 from Kullback (1959). The reason for re-
lating A4 to “separation” is given in Property 3 later.
Alternatively one can speak of “information,” or even
“entropy.” The factor of 2 in (17} makes 4 approximately
a x° statistic. See Appendix B.



1342

then the equations (15)-(17) show explicitly how to
calculate 4 from a given set of population parameters.
The problem is to locate a particular set of parameters
which minimizes 4.

So far, A has been described as a function of the u’s,
o’s, and ='s. If, however, the means lie on a von Ber-
talanffy curve (7) determined by I, L, and %, then A4
can be considercd a function of the von Bertalanffy
parameters, that is,

= A(, L, k, &’s, 7°S).

22/14

Similarly, if the standard deviations depend linearly on
the means, following (11) with parameters s and S,
Sthen

A= Aly’s, s, S, 7’s).

'({‘If both the von Bertalanffy curve (7) and the linearity
l«\)rclation (11) apply, then

S A=Al Lk, 5,8, 7).
>

3.252

gn short, 4 is always a function of the population
arameters, but the parameters of interest depend on
cwhether or not the means and standard deviations con-
@orm to some growth law. If so, then the parameters
_gaf the growth law become fundamental. In this way,
Oz stated in the introduction, the previously separate
%ues of growth and length—frequency analysis become
Wife.
hﬁlﬂ a typical length—frequency data set, there are
@gth intervals where the observed frequcncy is small
%&y, 0, 1, 2, 3, or 4). Some notation is neceded to
uss thcse intervals in a systematic way. For a small
mber r, let N, be the number of intervals on which
«Ff; > r. Also let g, be the total number of observations
Tassociated with these N, intervals. In symbols, define

—

o) N o2
29 g = X0
; Jj=1

there S () refers to the sum over those values of j for
zWwhich f; > r. Similarly, let
o)
H20) & =
=
<’:represent the total expected frequency associated with
Lintervals where f, >r.
[ Notice from (18) and (19) that g, = f because
"5Z<1)f represents the sum of all nonzero frequencies,
%that is, the total number of observations. By contrast,
Ofrom the definition (16), the expected frequencies are
never zero, inside or outside the observed length range.
Consequently, the total expected frequency on inter-
vals where f] > 1 is smaller than f; that is, g, < f. This
shows that

N
Z(T)/}

N N A~
@y X0 EOf=1,
J=1 J=t

where, ordinarily, the inequality is strict.
To understand the significance of the “minimum 4”
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criterion, the user should be aware of three basic prop-
crtics of A. These can now be described, with the aid
of the notation just defined.

PROPERTY 1. The “minimum A” criterion leads
to exactly the same answer as maximum likelihood.
However, it is numerically preferable to use A as the
criterion, rather than likelihood or log-likelihood.

This should reassurc the reader unfamiliar with the
separation statistic 4. He is actually finding the more
familiar maximum likelihood estimates. It turns out
that A is closely related to log-likelihood, except for a
constant which can be large. This large constant can
sometimes mask the behavior of the log-likelihood func-
tion, especially when computer precision is limited.
Consequently, 4 tends to be more sensitive to the
parameters. Details are given in Appendix B.

PROPERTY 2. In calculating A, one can omit in-
tervals for which there are no observations. In other
words, (17) can be replaced by

N ~ ~
(22) A =2 Z(T)fj log (f;/f3)-
=t

The reader may already have noticed (and even been
disturbed by) the fact that {17) is not defined if f; =
0 for some j, since then the logarithm is not defined.
However, in the limiting senses as f tends to zero, the
jth term of A tends to zero. (Reca]l that f; is never
zero.) This justifies (22). In principle, A can be con-
sidered an infinite sum over all possible length intervals;
however, the only nonzero terms in the sum are those
with f; > 0. It follows that 4 does not depend on how
the observed fish lengths are grouped, except through
the original choice of intervals. This fact has practical
significance, as discussed later in the examples.

PROPERTY 3. The separation statistic A is always
positive or zero when condition (21) is true. In fact,
A is zero only if

@) f,=4

for every j.

The fact that A is positive justifies calling it a “sepa-
ration,” particularly since the separation is zero only
if expected and observed frequencies agree completely.
The inequality 4 > 0, which follows from (21), is one
of the basic inequalitics of information theory. It is
proved, for example, by Rao (1973, p. 59). This in-
equality is not immediately obvious because 4 con-
tains terms both positive (when /; > f;) and negative
{when f; < ;). Notice parﬁcular]y that, if (23) holds,
then 4 = 0 because log 1 == 0. In practice, the pre-
dicted frequencies do not exactly equal the observa-
tions, and the minimum value of A4 is positive.

Criteria for Testing the Fit

In length—frequency analysis, the separation statistic
A (or, for that matter, any reasonable fitting criterion)
is a distinctly nonlinear function of the population
parameters. Unlike linear estimation, such as ordinary
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linear regression, nonlinear estimation problems do not
always have the convenient property that there is only
one solution. In fact, length—~frequency analysis typically
leads to many solutions. By analogy, one can think
of the fact in elementary algebra that the simplest non-
linear equation, a quadratic, usually has two solutions,
while a linear equation has only one. In practice, it is
often possible to reject one quadratic solution on
physical grounds. For example, one solution might be
negative when the solution of interest is positive. How-
ever, there is no general theory about which solution
is right; the choice depends on the situation. Similarly
in length-frequency analysis, the user must select
among competing solutions, according to his knowledge
of the situation. No general theory will make that
choice.

A related problem is that the user may be unsure
of the correct model for his data. He may not know
precisely how many age classes there are, or what sort
of structure (if any) to impose on the means and stand-
ard deviations. Often a diversity of different models
will fit the data rather well. This problem is typical for
length~frequency analysis; the data can be almost too
casy to fit.

A simple criterion for selecting among various pos-

sibilities would be to pick the one which gives the lowest

Sninimum value of the statistic 4. Unfortunately, as ex-
gamples given later illustrate, this may result in a poor

5 =<hoice. Generally (although not necessarily), the
E_greatcr the number of parameters in a model, the lower

Rhe minimum value of A. This consideration suggests
g_he usual application of a x2 test in which the number
+of degrees of freedom decreases as the number of esti-

Oumated parameters increases. Such a test is based on a

Can. J. Fish. Aquat. Sci. Downloaded f

theorem of statistics, given precisely by Cramér (1946,
section 30.3). It states that a certain statistic, evaluated
at the maximum likelihood estimates, has asymp-
totically (for large sample size) a 2 distribution.

One way to construct a x?2 statistic for this problem
is to select a small value of » (say 1, 2, 3, or 4), and
then lump together all those length intervals on which
fi < r. The corresponding statistic, in the notation of
(19)-(20) above, is then

(ﬁ - f1)2 (gr — §7‘)2
Sl .
.f]’ f_ &r
Here B, is associated with N[—I-l length groups,
namcly the N, intervals where f; > r and one further

group of intervals with f — g, observations. This sug-
gests a number of degrees of freedom

(25) Dr=Nr—Pv

N
(24) B, = Y0
J=1

where P is the number of parameters estimated.
Unfortunately, Cramér’s theorem cannot be applied
directly to the statistic B, for two reasons. First, except
when » = 1, the groups of intervals used in calculating
B, differ from those used in obtaining the likelihood
estimates (by minimizing 4). Second, the method of
selecting groups of intervals for B, depends directly on

1343

the observed frequencies f;? In fact, the distribution
of B, is simply not known in general. It seems reason-
able to conjecture that it might be approximately x2
distributed, at least for values of r large enough to guar-
antee several observations in every length group (say,
r = 3 or 4). We do not attempt here to develop a com-
plete mathematical theory for the use of B,. Instead,
we take a strictly pragmatic approach, as described in
the next paragraph.

For a given model, we first compute the required
paramecter estimates by minimizing 4. This avoids any
arbitrary grouping of the data, other than the initial
choice of length intervals, at least as far as the estimates
are concerned. (See Property 2 for 4, and the subse-
quent discussion, above.) Once the estimates are
known, we then calculate B, for several values of r
and compute the corresponding x? percentage levels for
D, degrees of freedom. (The necessary formulas are
given in Appendix C). In comparing solutions obtained
from various models, where each model may have more
than one minimum point, we simply rank the results
according to the x* percentage levels. In this way, we
can explore two questions: (1) are the rankings con-
sistent for various values of r, and (2) do the highest
ranked choices appear most reasonable biologically?
The answers suggest that the statistic B, can be a useful
guide, but not a final criterion, for sorting out multiple
solutions to a length—frequency estimation problem.

Appendix D gives details of computer methods used
to implement all the procedures described in the pre-
vious paragraph.

Example 1. Northern Pike

The first data set considered here pertains to North-
ern pike (Esox lucius) from Heming Lake, Manitoba.
It was originally presented by Macdonald (1969) and
then reanalyzed a decade later by Macdonald and
Pitcher (1979). The observed frequency data for this
example and the next one are listed in Table 2. These
data (previously published in graphical form) are
needed for reference in the discussion here.

As Macdonald (1969) describes, the pike sample
consists of 523 fish. The length of each is known, as
well as an estimate of its age (between 1 and 5 yr) from
scale analysis. This allows the results from length—fre-
quency analysis to be compared with a standard. The
first line in Table 3 (example 1.1) shows the popula-
tion parameters, i.e. u's, o’s, and «'s, determined by
scale reading. The next line (example 1.2) shows the
final results from length—frequency analysis published
by Macdonald and Pitcher (1979). Obviously, the
agreement between examples 1.1 and 1.2 is quite good.

*In theory, the method of grouping should depend on the
expected frequencies f;. Since these frequencies are usually
unknown, this requirement of Cramér’s theorem is almost
always violated in practice. The statistic B is at least based
on a prescribed rule for grouping, not an ad hoc choice of
the investigator.



Can. J. Fish. Aquat. Sci. Downloaded from www.nrcresearchpress.com by 70.67.253.252 on 06/22/14
For personal use only.

1344

CAN. J. FISH. AQUAT. SCI., VOL. 37, 1980

TasLE 2. Observed frequency data for pike and abalone. Frequencies should be read first
across and then down. (For example, fi = 4, f» = 10, f3 = 21 in the pike data.)

Pike frequencies. N = 30, x; = 19, x30 = 7T, w = 2, f = 523

4 10 21 11 14 31 39 70 71 44
42 36 23 22 17 12 12 11 8 3
6 6 3 2 1 1 1 0 1 1
Abalone frequencies. N = 62, x; = 8, x¢2 = 130, w = 2, f = 431
2 7 7 4 0 0 0 0 0 1
1 4 3 5 7 3 5 1 0 3
0 3 10 3 2 5 9 8 8 15
8 11 13 i0 15 13 11 12 14 12
17 14 17 18 20 10 11 10 11 9
7 8 10 5 6 4 4 7 3 4
0 1

Macdonald and Pitcher arrive at the estimates 1.2
by assuming o3 == 4, oy = 5, and o; = 6, as shown.
Before minimizing 4, they also lump the last six fre-
quencies (1, 1, 1, 0, 1, 1 in Table 2) to obtain a final
group of five fish. They argue (p. 991) that this makes
the model more robust to nonnormality. Nevertheless,
it should be recognized that lumping constitutes an ad
hoc decision with regard to the data. One could, instead,
lump the last four or five frequencies into a single
group. A consequence of this procedure is that the
lumped data sct does not distinguish between five pike
with lengths 67 cm and five pike with respective lengths
67, 69, 71, 75, and 77 cm, as observed. Example 1.3
(Tablc 3) shows the estimates that are obtained with-
out lumping the data. Not surprisingly, u; turns out
to be larger. In fact, because of the fixed standard
deviations oy, oy, and o, the last three means all turn
out to be larger in example 1.3 than in 1.2. This shift
results in an increase (from 49.5 to 55.6%) in the ap-
parent proportion of age 2 fish.

Example 1.4 (Table 3) shows a minimum point for
A obtained without lumping the data, but with the as-
sumption that the standard deviations are linear on the
means, as in (11). Notice that, like solution 1.2 of
Macdonald and Pitcher (1979), example 1.4 also gives
reasonable agrcement with the results from scale
analysis (example 1.1). The interesting difference is
that 1.4 is obtained (i) without assuming explicit values
for o3, o, and oy and (ii) without ad hoc lumping
of the data. Only the linearity relation (11) is assumed.
Example 1.5 shows a similar result based on the as-
sumption that the standard deviations increase linearly
with age, as in (12). Comparison between examples
1.4 and 1.5 shows that the two linearity assumptions
(11) and (12) lead to very ncarly the same result.

This discussion is not intended as criticism of solu-
tion 1.2 obtained by Macdonald and Pitcher (1979),
but rather as an illustration of one more point of view.
Part of their approach consists in lumping the data, as
deemed appropriate, for robustness. Our approach is
to avoid decisions in regard to the data as discussed
carlier in connection with Property 2 for 4. Instead,

we put decisions on structure directly into hypotheses
of the model. We utilize data lumping later, only as a
tool for assessing the fit. A useful outgrowth of our
approach in this case is that we need make no assump-
tions on particular values for the ¢’s. Qur unknown
standard deviations are s and S. In Macdonald and
Pitcher’s solution 1.2, the unknown deviations are o
and o, while o3, o, and o; are presumed known.?

Some assumption about standard deviations is cer-
tainly necessary for this problem. Examples 1.6 and 1.7
illustrate two minima for A in which there is no re-
striction on the o’s. (Incidentally, these examples show
how A4 can have more than one local minimum.) Both
solutions exhibit a peculiar feature: one of the stand-
ard deviations turns out extremely small. In each case
an entire age-class is used to explain some minor amount
of noise in the data. For instance, in example 1.6 the
fifth age-class consists entirely of the two observations
which comprise the small extreme right-hand mode of
the histogram of observed frequencies shown in Fig. 1.
From that point of view, example 1.6 would be an
excellent fit if indeed the final mode comprised a whole
age-group. In fact, both examples 1.6 and 1.7 suggest
that, without some structure imposed on the standard
deviations, the analysis points to a solution comprising
only four groups with significant numbers of fish. Ex-
ample 1.8 shows the solution obtained with this as-
sumption, M = 4. Aside from components with minor
numbers of fish, examples 1.6 to 1.8 look much the
same. Biologically, example 1.8 is very reasonable if
the combined group of age 4’s and 5’s is regarded as a
single group of undistinguishable fish.

It is well known (see, for example, Macdonald and

*While the final draft of this paper was in revision, we
discussed these results with Prof Macdonald and received
a letter in reply showing another interesting result obtained
with log-normal components. Certainly, no single approach
can be considered definitive. Ordinarily, the practitioner will
try several approaches to discover that which best suits his
knowledge about the biological background for the data.
In making a final decision, the x* analysis given here may
prove useful.
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1.1 and 1.2 correspond to minima for 4.
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Examples of means, standard deviations, and percentages for various fits to the pike data. All examples except numbers

Mean lengths (cm)

Standard deviations (cm)

Percentages (as fractions)

Example

no. K1 '3 M3 K4 M5 a1 gy 03 o4 41 ™ T T3 Ty w5 A

1.12 23.33 33.09 41.27 51.24 61.32 2.44 3.00 4.27 5.08 7.07 0.105 0.465 0.298 0.090 0.042 21.28
1.2 22.50 33.10 40.04 48.57 60.02 1.92 3.40 4.00 5.00 6.00 0.085 0.495 0.238 0.128 0.054 19.70
1.3 22.66 33.73 42.13 52.58 65.15 1.80 3.63 4.00 5.00 6.00 0.082 (.559 0.225 0.110 0.024 17.14
1.4 22.67 33.44 40.73 51.27 62.77 1.80 3.53 4.70 6.40 8.24 0.082 0.498 0.265 0.128 0.027 16.20
1.5 22.68 33.29 39.77 50.58 62.10 1.81 3.44 5.07 6.70 8.33 0.083 0.448 0.306 0.134 0.029 16.16
1.6 22.65 33.46 40.48 52.90 76.02 1.79 3.54 5.51 7.78 0.49 (0.082 0.469 0.310 0.136 $.003 13.29 .
1.7 22.74 33.46 40.11 41.77 50.98 1.84 3.37 0.65 5.90 10.11 0.084 0.484 0.034 0.241 0.157 14.98
1.8 22.61 33.65 41.04 51.59 — 1.76 3.67 5.92 9.85 — (0.080 0.490 0.279 0.151 — 16.84

Pitcher 1979, p. 991) that solutions like 1.6 and 1.7
with standard deviations less than the interval width
may be meaningless. The question is, how can they
be avoided? For all the cxamples in Table 3, the values
of A are lowest by far in examples 1.6 and 1.7. Search
algorithms to minimize A4 will try to reach these points.
Ad hoc constraints, such as lower bounds on the o’s,
may simply result in a solution tight on the constraints
=2s the algorithm seeks the low point. In a biological
Sontext, it may be more appropriate to invoke a gen-
$ral hypothesis, such as linearity of the o’s, to avoid

nreasonable minima. In other contexts, such as the
- canalysis of physical X-ray spectra, this hypothesis may
e completely inappropriate. These remarks illustrate
g general point of this paper: the structure of the
o 4

arameters often distinguishes biological applications of
i
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Fic. 1. Length-frequency histogram and two curves of
expected frequencies for the pike data. The solid curve per-
tains to example 1.1, and the broken curve to example 1.4.

2True results from scale reading, published by Macdonald (1969).
b] ength—frequency solution published by Macdonald and Pitcher (1979).

mixture analysis from applications in other fields. The
pike example underscores the importance of the o’s.
In practice, the biologist may be far more interested in
the #’s and p’s than he is in the o’s, yet the structure
of the o’s may determine the solution he finds.

All examples in Table 3 lead to a good match be-
tween expected and observed frequencies. Figure 1
shows the expected frequency curves for examples 1.1
(solid curve) and 1.4 (broken curve) in relation to the
observed frequency histogram. Visually, both curves
are close to each other and to the histogram. Similarly,
the other examples in Table 3 also correspond to rea-
sonable fits from the point of view of matching the
observations, even though the values of A vary con-
siderably among the examples. This illustrates the multi-
plicity problem discussed earlier: the data are almost
too easy to fit.

Table 4 shows the results of a x2 analysis applied to
solutions 1.3 to 1.8 from Table 3. In each case, both
the statistic B, and the corresponding x2 level are cal-
culated for r = 1, 2, 3, and 4. The resulting ¥2 levels
are then used to rank the various solutions. Table 5
lists the rankings obtained in this way. As described
earlier, the theoretical basis for this process may be
incomplete, but the results are interesting. Rankings
are identical with r = 2 or 3, and very similar with
r = 4. For all three values, r = 2, 3, or 4, the highest
ranked solutions are the most biologically reasonable
ones, namely 1.4 and 1.5 in which the o's increase
linearly. The two lowest ranked solutions, 1.6 and 1.7,
are those in which one of ¢’s is unacceptably small.
Examples 1.8 (with only four distinguishable age-
groups) and 1.3 (with three prescribed o’s) are ranked
in the middle. In short, for r = 2, 3, or 4, the x2 rank-
ings correspond well with biological validity in the
results.

When r = 1, the x? rankings are less meaningful
biologically because the unacceptable solution 1.6 ranks
essentially the same as the acceptable solutions 1.4 and
1.5. Table 4 shows x> levels for these three cases which
are almost identical (65.1, 65.4, 65.5% ) when r = 1.
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Tasre 4. Quantities for assessing the fit of examples in Table 3. Examples 1.1 and 1.2 are excluded because they do not corre-

spond to minima for 4.

D, B, x? level (%
Example
no. P r=1r=2r=3r=4 A r=1r=2r=3r=4 r=1r=2r=3r=4
1.3 11 18 13 12 10 17.14 16.65 12.24 12.22 11.08 54.8 50.8 42.8 135.1
1.4 11 18 13 12 10 16.20 15.10 11.39 11.38 10.38 65.5 57.8 49.7 40.8
1.5 11 18 13 12 10 16.16 15.16 11.34 11.34 10.43 65.1 58.2 50.0 40.4
S, 1.6 14 15 10 9 7 13.29 12.33 11.16 11.16 10.18 65.4 34.5 26.5 17.8
x L7 14 15 10 9 7 14.98 14.72 9.81 9.81 9.26 47.1 45.7 36.6 23.4
N 1.8 11 18 13 12 10 16.84 16.73 11.70 11.70 11.20 54.2 55.2 47.0 34.4
8
c

Phis difficulty confirms expectations about problems
Hith a x2 analysis when » = 1. The theory suggests
at B, simply may not be x?2 distributed because there
thay be too few observations in some length-groups.
r~ A related comment applies to the statistic 4. For
eoretical reasons given in Appendix B, the statistic 4
s approximately equal to B;. (See also footnote 1.)
is approximation is evident in the examples of Table
&. However, in view of the problems with B,, it may
8_e wrong to suppose that 4 is x2 distributed. This
ifficulty underlies the approach taken here whereby
¢ “minimum A” criterion is used to obtain parameter
Ssimates and then the statistic B, (r > 2) is used to
k various proposed solutions. In practice, it appears
@isable to check several values of r to see how the
Tanikings are affected.
cg

% %
g
g£5lhe second data set considered here pertains to
Rbrthern abalone (Haliotis kamtschatkana) from the
®ucen Charlotte Islands, British Columbia.

It appears, along with numerous other data, in the
deport by Breen and Adkins (1979). The particular
‘Gbalone population considered here is a composite as-
Bociated with all Nereocystis communities in the sam-
Cﬁled sregion. (See Fig. 54 of the report.) There are
‘Two minor modifications of the published data. Three
(ngrge animals, deemed by P. A. Breen (personal com-

unication) to lie in a separate group from all the

est, are omitted. Also, to reduce computation, the fre-
_éuencies are grouped in 2-mm intervals, rather than 1-

Example 2. Northern Abalone

LL

~TaBLE 5. Example numbers placed in rank order by the x?
evels in Table 4. For each value of r, the six examples are
anked highest to lowest, left to right.

Rank order
r 1 2 3 4 5 6
1 1.4 1.6 1.5 1.3 1.8 1.7
2 1.5 1.4 1.8 1.3 1.7 1.6
3 1.5 1.4 1.8 1.3 1.7 1.6
4 1.4 1.5 1.3 1.8 1.7 1.6

mm as reported. This grouping probably reflects
realistic limits in determining abalone size (P. A. Breen
personal communication). The data, so revised, are
fisted in Table 2.

There is no known independent method of aging
this species. Consequently, a standard, like example 1.1
for the pike data, is not available for comparison with
results from length—frequency analysis. The precise
number of age-classes is not even known, but it is be-
lieved to be much larger than 5. The length—frequency
histogram in Fig. 2, with its many modes, suggests that
this might be true. In spite of these problems, some
independent information is available on growth.
Abalone have been tagged and recovered 1 yr later to
measure annual growth (Quayle 1971). Using a Wal-
ford plot of these size data, one can estimate L- and k.
(See Ricker 1975.} In this way Breen (1980) obtains
a value of L» equal to 128.9 mm and k equal to 0.766.

In view of this evidence, it is reasonable to investi-
gate the results of length—frequency analysis based on
von Bertalanffy growth. As a start, consider some pos-
sible age-groups suggested by modes in the histogram

neY

ZREQUE,

T T < v T T 1 T T T
o kS 20 w0 ac 50 €0 70 80 au 105 10 1z0 [EO

LENGTH  (men)

Fic. 2. Length-frequency histogram and two curves of
expected frequencies for the abalone data. The solid curve
pertains to example 2.1, and the broken curve to example
2.4,



SCHNUTE AND FOURNIER: GROWTH STRUCTURE IN LENGTH-FREQUENCY ANALYSIS

TasLe 6. Examples of means (mm), standard deviations {mm),
data. All examples correspond to minima for A.
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and percentages (as fractions) for various fits to the abalone

Example
no. Quantity i=1 i=2 i= i=4 i=5 i=6 i=7 i=8 i=9 i=10 i=11 A
Modes® 11 36 52 66 76 86 96 102 112 ? 122
Est. u’sb 11 31.7 494 643 77.1 87.9 97.1 104.9 111.5 117.2 122
2.1 ws 12.38 33.90 51.84 66.80 79.27 89.67 98.34 105.56 111.59 116.61 120.80 66.13
’s 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.25 4.25

3 7’s 0.046 0.069 0.059 0.170 0.163 0.182 0.135 0.051 0.067 O 0.058
ﬁ 2.2 u's 11.29 34.76 53.17 67.61 78.93 87.81 94.78 100.25 104.53 51.33
Ite) o’s 2.05 3,35 4.65 595 17.25 8.55 9.85 11.15 12.45
o T’ 0.047 0.068 0.058 0.178 0.07f 0.241 0.015 0.032 0.290
8 2.3 u's 11.28 34.98 53.75 68.60 80.36 89.67 97.03 102.87 107.48 111.14 46.55
S a’s 1.84 3.66 5.10 6.24 7.14 7.86 8.42 8.87 9.22 9.50
N s 0.046 0.069 0.063 0.200 0.074 0.274 0.089 O 0 0.185
S 2.4 WS 11.29 34.87 53.87 69.19 81.53 91.48 110.64 46.26
N o’ 1.83 3.66 5.14 6.33 7.29 8.06 9.35
© ’s 0.046 0.069 0.065 0.209 0.084 0.329 0.198
oS
’; 2From Fig. 2.
—g bFrom a von BertalanfTy curve with / = 11, L = 122, k = 0.85 (or Lo, = 149.2, K = 0.1625, to = 0.5288).
Q
S of Fig. 2. Table 6 lists a set of 10 major modes sclected In this case there are 14 parameters (I, L, %, s, and
ﬁ by eye. The nine gaps between them (25, 16, 14, 10, 10 «’s), rather than 32 as would be required by an
g 10, 10, 6, 10, 10 mm, respectively) appear to shrink unstructured analysis of 11 age-classes. Unfortunately,

é"omewhat in von Bertalanffy fashion, but with a prob-
Fem toward the end. One possible way to deal with
@his problem is to add an extra age-class, thus making
&wo small gaps in place of one large onc at the end.

or instance, the parameters [ == 11 mm, L = 122 mm,

nd k= 0.85 with 11 age-classcs generate a set of
dneans reasonably close to the observed modes, as shown
Egn Table 6. Here / and L correspond to the first and
:LITast observed modal lengths, and & is found by trial
and error to give reasonable approximations for the re-
maining modes. In this way, the histogram itself sug-
gests first estimates for I, L, and k. Incidentally,
the corresponding parameters, L. = 149.2 mm, K =
0.1625, and ¢, == 0.5288 are not amenable to such
simple intuitive motivation. (For example, L. lies well
beyond the range of data.) This illustrates the utility
of the new von Bertalanffy parameters for length—fre-
quency analysis.

When the eye scans the histogram in Fig. 2 and
seeks to identify age-classes with the various modes, it
tends to pick out clusters with roughly the same width.
Example 2.1 in Table 6 reflects this perception. It is a
solution with means on a von Bertalanffy curve, con-
stant standard deviations, and 11 age-classes (in accord
with the last paragraph). The solid curve in Fig. 2
represents the predicted frequencies for this case. The
various age-groups show up distinctly as either modes
or bends in the curve. Not surprisingly, in Table 6 the
age-class next to the last registers zero percentage of
the fish, since it appears as an artifact to accommodate
von Bertalanffy growth. In Table 7, the parameters [,
L, and k for example 2.1 turn out remarkably close
to the initial estimates of 11, 122, and 0.85, respectively.
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in spite of the comparatively low number of parame-
ters, Table 8 shows that the fit is still not good enough.
Example 2.1 would be rejected by x? analysis, for each
value of r, even at the 5% cutoff level. Apparently, the
requirement of constant standard deviations is too re-
strictive. In fact, Fig. 2 suggests this. For instance, the
solid curve fits the first age-class poorly, because the
estimated value of o is too large. This forces the first
mode to be too wide and low compared with the cor-
responding mode on the histogram.

Example 2.2 (Table 6) seeks to overcome this prob-
lem by allowing the standard deviations to be linear
on the age. The value of 4 drops, and the first age-
class is accommodated much better. However, the o’s
now become very large for the older age-classes, be-
cause they must increase by a fixed amount from each
age to the next. In fact, oy is so large that the ninth
age-group accounts for all observations above 104 mm.
This suggests a different perception of the histogram in
Fig. 2. Perhaps the modes at higher lengths do not
correspond to separate age-classes, but are just noise
on the descending limb of a single normal curve.

One way to avoid the rapid growth in standard devia-
tions of example 2.2 is to let them be linear on the
means, so that the o’s reach a limiting size with the u’s.
Example 2.3 illustrates a solution with this assump-
tion. The results in Table 6 are similar to example 2.2,
except for the higher age-groups. In particular, example
2.3 contains a final age-group quite isolated from all
the rest. It appears that for the abalone population,
with its numerous age-groups, the particular linearity
assumption, (11) or (12), on the ¢’s may be important.
This contrasts with the situation for pike, where either
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TaBLE 7. Parameters for the means and standard deviations in the fits to the abalone data
cited in Table 6. The standard deviations are either constant (CO), linear on age (LA), or

linear on the means (LM),

Example Age-

no. classes { L k L, X to a’s s S

2.1 11 12.38 120.80 0.8337 141.78 0.1819 0.4978 CO 4.25 —

2.2 9 11.29 104.53 0.7843 120.12 0.2429 0.5936 LA 2.05 12.45

2.3 10 11.28 111.14 0.7916 125.02 0.2337 0.5954 LM 1.84 9.50

2.4 6 11.29  91.48 0.8059 132.78 0.2158 0.5882 LM 1.83 8.06

TaBLE 8. Quantities for assessing the fit of examples in Table 6.
D, B, x2 level (%,
Example

no. P r=1r=2r=3r=4 A r=1r=2r=3r=4 r=1r=2r=3r=4
2.1 14 40 36 34 28 66.13 57.69 54.19 53.02 49.14 3.5 2.6 2.0 0.8
2.2 13 41 37 35 29 51.33 49.02 43.44 42.93 37.83 18.2 21.6 16.8 12.6
2.3 14 40 36 34 28 46.55 43.65 39.46 38.73 34.26 31.9 31.8 26.5 19.2
2.4 12 42 38 36 30 46.26 43.33 39.37 38.62 34.17 41.4 40.8 35.2 27.4

assumption gave similar results. (See examples 1.4 and
1.5.)

Examples 2.2 and 2.3, especially the isolated final
age-group of 2.3, suggest a new approach to the analy-
sis. Perhaps the animals grow rapidly at first, forming
identifiable age-classes, and then finally growth slows
so much that all animals after a ccrtain age appear as a
single group. These ideas motivate example 2.4. Here
the first six age-classes have means on a von Bertalanfly
curve, while the last mean is independent of the rest.
The standard deviations, including the last, are pre-
sumed linear on the means. There are 12 parameters:
I, L = pg), k, p7, 8, S, and 6 =’s. The predicted fre-
quencics for this case are represented by the broken
curve in Fig. 2. It is less undulating than the solid curve
(for example 1.1), reflecting fewer age-classes. The
general fit, especially for the first two age-classes, is
distinctly better than in example 1.1. Notice also that
the broken curve descends steadily through the higher
modes of the histogram, which are regarded by the
statistical model as noise.

Of the four length—frequency solutions given here
for the abalone data, example 2.4 is certainly the most
attractive. Table 8 shows that even though example 2.4
has the fewest parameters, it gives rise to the lowest
minimum valuc of 4. Not surprisingly, then, the x2
analysis ranks example 2.4 highest. Incidentally, in this
case, unlike the earlier one for pike, the ranking of
solutions is the same for r=1, 2, 3, or 4. Finally,
Table 7 shows that example 2.4 corresponds to values
of L. (132.78 mm) and k (0.8059) which agree rea-
sonably well with the values (L. =:128.9 mm, k ==
0.766) obtained independently from other data by
Breen (1980).

These four examples certainly do not exhaust the

possibilities for discussion of the abalone data, and
they should not be regarded as final biological con-
clusions. They do, nevertheless, illustrate how growth
structure aids the discussion of length—frequency analy-
sis. Notice particularly how these methods assist in
determining the number of age-classes. Indeed, part of
the abalone analysis involves deciding how many age-
classes are discernible. Growth structure appears to be
a useful tool in making that decision. Possibilities for
future analysis of the abalone data include a parametric
description of the =’s to reflect mortality and less re-
strictive descriptions of the u’s and o’s.

Conclusions

The examples in the previous two sections are in-
tended to help the reader develop intuition on the use
of growth structure in length~frequency analysis. Al-
though the problem of multiple solutions makes a gen-
eral theory impossible, the examples do suggest several
basic conclusions or guidelines. These are presented
here.

1. Because length~frequency analysis may lead to
many solutions for the same data set, subjective deci-
sions must often be made on biological grounds. One
way to introduce biological opinion is to require that
the means and standard deviations conform to an as-
sumed growth model.

2. The x2 level associated with the statistic B, in
(22) can be helpful for choosing among competing
solutions, although it should not be regarded as
definitive. Solution rankings by x? level tend to be
consistent for ow values of » > 1. On purely statistical
grounds, the %2 analysis may suggest actually rejecting
only a few of many competing solutions.
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3. Even if the percentages and means are the parame-
ters of greatest interest, the structure of the standard
deviations may be the most important feature in de-
termining which solution is obtained. If the o’s are
assumed to have linear growth, it is generaily more
realistic to presume linearity on the means (11), rather
than on the ages (12), particularly when the number
of age-classes is large.
4, A von Bertalanffy structure for the means is some-
tlmes too restrictive, but it can be useful for suggesting
Rl the number of discernible age-classes when that num-
N ber is unknown. It can also be used to check the results
& of length~frequency analysis against an independent
§ measure of growth from a tagging study over 1 yr.
3. Reasonable estimates for I, L, and k can often be
& obtained directly from the length—frequency histogram.
g By contrast, the corresponding values of L», K, and ¢,
N may be much less apparent and even misleading.
'S5 6. In the minimization process, the parameters /, L,
,cg' and % tend to be much more stable numerically than
> L=, K, and ¢,.

7. Length—frequency analysis tends to lump the final
age-classes together if they are in close proximity or

contain small percentages of fish. In such cases it may
g be impossible to distinguish the final ages, and the best
pproach may be to assume that all fish beyond a cer-
@m age comprise a single group.
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Appendix A. Derivation of Equation (7)

Equation (7), which is an alternative form of the von
Bertalanfty growth relationship (2), follows from three
assumpftions, namely,

(A-i) Miy 2 T Mipl T k(Mi+1 - I-‘i)s
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(A2) m =1,
(A3) par = L.

Here, (A1) follows from (3)—(4), and (A2) and (A3) are
the definitions of ! and L. When & = 1, (A1) shows that the
means are evenly spaced, as stated in connection with (7).
When k s« 1, (Al) can be regarded as a second-order dif-
ference equation. It is linear with constant coefficients. The
boundary conditions for (A1) are (A2)-(A3).

One possible solution to (A1) is

K = a

22/14

Ofor some constant «. Another possible solution, as the
—reader may verify is

m = Bk

gfor some constant 8. The theory of difference equations
WOstates that any solution to (Al) must be a combination of
~these two solutions, that is,

©

,Q-(A“) B = a + Bkt

BSubstituting (A4) in (A2) and (A3) gives
g(AS) [ = a-+ gk,

g(A6) L =« gk,

SEgquations (A5)-(A6) can be solved for « and p. Sub-
Sahituting the solutions in (A4) gives (7).
%Another approach, independent of the one just given,
igvolves showing algebraically that (4)-(6) and (8)-(10)
5aPe inverse transformations of each other. It can then be
=Wrified that (4)—(6) transforms (2) into (7), and (8)-
ggm transforms (7) into (2).

52 0Ol
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= ;' Appendix B. Likelihood, Separation A, and x>
‘g'*The log-likelihood function C associated with the ob-
-8servations s 1s given by

) N .
%(Bl) C=3 filog(fil)

j=1
%(See, for example, van der Waerden 1969, p. 186). In
‘the sum (B1), the jth term is 0 when f, = 0, consequently,

at, Sci

N .
(B2) C = 3XOflog(f;/N),
i=1

S

Owhere the special 3~ notation is defined in connection with
<(19). 1t follows from (B2) and (22) that

X

L N . a
L(B3) 4= —2C+ 230 flog(f/f).
- j=t

&n (B3) notice that, while 4 and C depend on the popula-

Otion parameters, the summation depends only on the ob-
servations. As functions of the parameters, then, the
separation statistic 4 is minus twice the log-likelihood plus
a constant. This shows that C is a maximum when 4 is a
minimum, and vice versa, as stated in Property 1.

The constant term in (B3) is always negative, and it
can be quite large. For ¢xample, with the pike data it is
—2991.29. In Table 3, the values of 4 go from about 13
to 21, producing a change in the first decimal place from
the smallest to the largest value. By contrast, the values of
C for these examples would go roughly from —1506 to
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—1502, resulting only in a change of the fourth decimal
place. This substantiates the claim in Property 1 that, if
computer precision is limited, 4 makes a better objective
function than C.

The value of 4 has the added advantage that it is more
meaningful than C because it approximates the x* statistic
B;. If x is near 1, then
(B4) log x = (x — 1) — 3x — D2

When A ig minimized, the expected frequency f; is near the
observed f;, so that the ratio #,/f; is near 1. It follows from
(22) and (B4) that

N A 7~
A= 230 flog(f;//)
j=1

_zjg:lm f}[(‘% - 1) - %(jf;? - 1)2]

IR

J

N a N a a
= —2]};1(" G=m+ E:"(f} - D

N a a
=21~ g0+ L0~ )

In the final sum above, one can substitute f; for f, in the
denominator with the same degree of approximation already
used in applying (B4). This gives

N -
(BS) A=2Af—g)+ Em &t — 1

The definition (24) for B;, taken with the fact that g; = f
(as discussed in connection with (19)), shows that

(B6) Bi=(f—g)+ é“)(f; —

It follows from (B5)—(B6) that
(B7) 4 E(f'- g1 + B

Ordinarily, g, (the sum of expected frequencies on inter-
vals with 7; > 1) is close to f at minimum A. Since f > g,
(B7) suggests that 4 should typically be slightly larger than
By, as it is in all the examples of Tables 4 and 8.

Appendix C. The Normal Integral and x? Levels

At biological laboratories, the library of mathematical
literature is sometimes quite limited. As a result, some
readers of this paper may have difficulty locating methods
to calculate the normal integral (15) and to determine x*
levels associated with the statistic B,. For convenience,
suitable formulas are cited here.

Hasselblad (1966) suggests calculating ¢:; in (15) by the
approximation

w X; = g\ 2
(Cl ;= ——— eX I:_,l(j—) ]
LG =l L

Unfortunately, (C1) can be a poor approximation when
w is as large as one of the ¢’s. This is the casc in all pike
examples, where o, is about 1.8 and w is 2. For the sake of
improving (C1), define a function F(z) sequentially as
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follows:

t = (1 + bolzi)™,

u=ibtﬂs
i=1
1 2 /n
Vv =— —z2/2),
\mexp( z%/2)
_ [l —uv,z>0
FG) = uv,z < 0,

where the constants bo to bs; are, respectively, 0.2316419,
0.319381530, —0.356563782, 1.781477937, —1.821255978,
and 1.330274429. Also define z. and z- by

I Bl
G P

Then a good approximation to ge; is

© (C2) gy = F(zy) — F(z.).
o

™ It turns out that the approximations (C1) and (C2) are
B close if w is small compared to ¢; because then the dif-
€ ference z. — z- is small compared to 1. The approxima-
8 tions leading to (C2) come from Anon. (1964).

The calculation of x* levels involves two functions defined
or z > 0 and an integer n, namely,

7.253.252 on 06/22/14

press.

Gi(z, n) = (z/2)n/? e—z/z[l + i% ]I:Il (n -i Zj)]’

n/2
Ir Jj
Gaon) = J=1
(n+1)/2
V@ II (- %), nodd
=1

, 1 even

«-or personal use only

ere the quantity G.(n) is, in fact, the gamma function
calculated at 1 4 n/2. The x* level, H, for the statistic B-
with D, degrees of freedom, which corresponds to the
probability that the statistic has a value B, or larger, is

(€3) H(Bn Dr) =1- Gl(Bra Dr)/G2(Dr)'

Formula (C3) is used to obtain the final four columns in
Tables 4 and 8. The theoretical basis for (C3) is given by
Melsa and Sage (1973).
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Appendix D. Computer Methods

sh. Aquat. Sci.

Numerous algorithms are available for performing a

IT computer search to locate a function minimum. Some re-
— quire the function’s derivatives, and others, called direct
> search methods, do not. Although derivative-based
O algorithms are usually more efficient of machine time, direct
search methods typically involve less human time because
they do not require the user to calculate and program
derivatives. In this application, where the function 4 can
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depend on the parameters in many different ways, it is par-
ticularly inconvenient to produce the appropriate derivatives
for each case. Macdonald and Pitcher (1979) employ the
Nelder—-Mead algorithm, a remarkably simple direct search
technique. The idea behind the method was originally for-
mulated by Nelder and Mead (1965). Later, O’Neill (1971)
translated it into a computer program. Various corrections
have since been suggested by Chambers and Ertel (1974),
O’Neill (1974), Benyon (1976), and Hill (1978). All
minima reported here were located by this technique.

If a direct search method is used, this paper contains all
formulas necessary for writing a computer program to
generate results like those in Tables 3-8. For convenience
in describing the calculations, let zi, ..., z» be the P
parameters used by the statistical model. Suppose that the
first P; z’s determine the u’s, the next P. z's determine the
o’s, and the final P, 2’s determine the #’s. (Thus P; 4 P; +
P; = P.) For example, if the u’s are required to lie on a
von Bertalanffy curve, then P, = 3 with z, = [, z. = L,
z3 = k. If the u’s are unrestricted, then Py = M with 2, =
wi for i from 1 to M. Similarly P. = 2 if the ¢’s are linear,
and P, = M if the ¢’s are unrestricted. In all examples here
P; = M — 1, because the last percentage is determined by
the previous ones.

In addition to the direct search algorithm, the user must
supply program modules to do the following eight tasks:

1. Calculate the p’s from the first Py z’s. This might involve
7).

2. Calculate the ¢’s from the next P. z’s, as well as the u’s
if required. This might involve one of (11)-(14).

. Calculate the #’s from the final P; z’s.

4. Calculate the f's from the u’s, ¢’s, and =’s. This involves
(15)-(16), as well as (C2).

5. Calculate A from the f’s and f’s. This involves (22).

6. Calculate, and add to A4, penalty functions which are
large at forbidden parameter values, such as =, < 0 or
me > 1.

7. Given r, calculate B, and D, from the f’s and f s. This
involves (19)—-(20), (24}, and (25).

8. Calculate a x* level H from B. and D.. This involves

(C3).

These programs should be kept modular so that individual
steps, especially 1 and 2 above, can readily be adapted to a
particular model.

After these tasks have been programmed, they can be
used by two master programs. In the first, the search
algorithm calls steps 1-6 to compute A at the point (z: ...,
zr). This allows the algorithm to explore P-dimensional
space and locate a minimum point. The penalty functions
(step 6) play an important role in forcing the algorithm to
avoid unreasonable parameters. For example, 10°r;? might
be added to 4 if =; < 0 and 10°(1 — =) might be added
if =« > 1. Other parameters might also be restricted if the
user finds it appropriate. The second master program, which
is used after a minimum has been located, calls steps 1-4
and 7-8 to determine the relevant x*levels for the minimum
point.
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