
Canadian 
Journal 

of Fisheries 
and 

Sciences 
Volume 37, No. 9, September 1980 

ournal 
canadien 
des sclences 

halieutiques 

V s l u m  37, no 9, septembre 1980 

A New Approach to Length-Frequency 
Analysis: Growth Structure 

JON ~ C H N U T E  AND DAVID FBURNIER 
Drpurtment cf Fisheries and Ocemzs, Resc~mlrcr Services Branch, PuciJic Bi(~kogicul Sfatiol~, 1Vcanatrn0, B.C. V9R 5K4 

SGHNUTE, J., ANI) Ll .  FOIJRNIEW. 1980. A new approach to length-frequency analysis: growth 
structure. Can. J. Fish. Acluat. Sci. 39: 1337-1351. 

This paper presents a new approach to lengtk-Srcquency analysis which takes account of 
bi~biogical structure in the mean lengths and standard deviations in length for various age-classes 
of fish. The new rnethsds help determine b~ologically meaningful ssluticsi-ns, even when earlier 
method5 lead to an ambiguous set s f  competing solutions. The structure tsf the standard devia- 
tions turns out to be especially iariportant. For describing the means, new parameters are defined 
for von BertalaniTy growth which prove to have greater biological meaning and numerical 
stability than L,, A, and fo. These new parameters can often be estimated easily from the raw 
data in case\ where the specicr experiences a slowing of growth with age. This paper also pre- 
sents x%ethods which call be used to rank conapeting \olut~ons, although the results are not 
definitive. A11 methods are 11Bustrated using data pre\'iously published for pike and abalone. 
An appendix describes in detail the computer progranls required for the analysis. 

Key rvorcis: lerngth-frequency analysis. aging of samples, von Bertalanffy growth, growth, 
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L.'approche nouvelle de l'analjs~: dc la friqurmr: iies lor~gu~ur s prehel-atec dans cet article 
tient compte de Ba structure biologiclue dans les loangueurs moyennes et dans its kcarts types ce 
longueur chez diverscs classes d'iige de poissons. Ck.\ rtom\,elles nmCthodes &[dent B tra:.s$er des. 
solutions biologiquement \ignlficatlves, m6me qmnd d'autres methi~des ont donne 1111 en- 
semble ambigu de solutiultns opposkes. Partlculikrement ~mportante est la structure des ecarts 
types. Be nouveaux paramktres de crolssance de von Bertalanffy sont utilises pour decrire Bes 
moyennes et s'avkrerat biologiquenlent plus significatifq et numCriquemennt plus stabes yue 
L,, K et t o .  Souvent, ces nouveaux paramktres sont facllemetat estrmks h partir des donnees 
brutes dam les eas o i ~  l'espkcc subit un ralentissement de croissance avec l'2ge. On  trouvesa 
Ggaleanent dans a t  art~cle un expos6 de rn6thodes de X 2  pouvant servlr B cilasser des solutions 
opposkes, sans toutefois qu'on ait de resultats dkfinitifs. Toutes ces mklhodes sont iilustrkes 
par des donnees dejB publikes sur le brochet et l'ormeau. Les programmes d'ordinateur nices- 
saires B l'analyses sont dkrits en dktall en appendice. 
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IN studying a fish stock, the biologist frequently tries 
to determine three basic characteristics, namely, ( 1 ) 
the mean Bength at each age, (2)  the distribution of 
lengths. and ( 3 )  the distribution of ages. Clearly these 
characteristics are related. For example, if the mean 
length at age and the lcngth distribution are both 
known, then something can be said about the age dis- 
tribution. This principle underlies the use of age-length 
keys. 

Usually the distribution of fish lengths is the easiest 
characteristic of the three to ascertain. One need only 
take a suitably large random sample of the stock and 
measure the length of each fish in it. By contrast, the 
other two characteristics nlay be very difficult to detcr- 
mine, because they involve knowing the ages of fish in 
a sample. For this reason attempts have been made to 
use the Bength distribution alone to determine both the 
age distribution and the mean length at age. 

Such methods date back to Petersen (1892), who 
used length-frequency modes in a population of 
Zoarces viviparus to identify distinct age-groups. An 
interesting reproduction of Petersen's key figure appears 
in Ricker (1975, p. 204) ; one can see immediately how 
distinct length clusters visually suggest distinct ages. 
About the same time, Pearson (1894) developed the 
first statistical treatment of the problem of overlapping 
component distributions, although his method applied 
to the case of two components only and did not easily 
generalize. For practical reasons, modern computers 
are necessary to implement a general statistical proce- 
dure for distinguishing an arbitrary number of over- 
lapping component distributions. Hasselblad ( 1966) 
first described such a method in detail and developed 
the necessary computer program. However, workers in 
fisheries research have primarily favored the graphical 
methods of Harding (1949) and Cassie (1954). In a 
recent departure from this tradition, Macdonald and 
Pitcher (1979) show how some variations s f  Hassel- 
blad's statistical technique can be applied to fish stocks. 
Also, h4cNew and Sommerfelt (1978) discuss dif- 
ficulties which may occur when the distribution of 
lengths at sash age is not normal as Hasselblad assumes. 

The principal motive for length-frequency ailalysis 
has usually been to determine the distribution of ages 
of fish. For management purposes. it is important to 
know the age con-aposition to predict the status of the 
stock in future years. However, as stated earlier, the 
analysis also gives information on the length at age. The 
interested worker may then go on to constnact growth 
curves, say of the von Bertalanffy type. This has always 
been viewed as a separate problem. First. one might use 
the methot% of Cassie to find mean lengths at age; then, 
second, one might determine an appropriate growth 
curve. These have been considered separate issues, with 
a distinct procedure for each case. 

This paper presents a new point of view in which 
these two previously separate issues become one. A 
single proccdure applied to length-frequency data gives 
both the age co~npositian of the stock and the parame- 

ters for growth. More explicitly, the procedure uses 
length-frequency data to determine the percentage of 
fish at each age, as well as parameters which define the 
mean length and standard deviation in length at each 
age. For example, three von Bertalanffy parameters 
(such as Ln, K, t o )  might be determined which define 
a growth curve through the mean lengths. 

Aside from giving growth data along with the usual 
age composition analysis, the new procedure has at 
least one further advantage over those used previously. 
It helps eliminate ambiguity. Most workers who try 
Cassie's method of plotting the cumulative frequency 
on probability paper soon discover that the location of 
inflection points (which serve as breaking points be- 
tween age-groups) can be quite ambiguous. Also, each 
time one makes an ambiguous choice, that choice per- 
petuates itself into the determination of further inflec- 
tion points. This difficulty is somewhat circumvented 
by Hasselblad's statistical procedure, but not entirely. 
Even Hasselblad's method may give rise to many com- 
peting solutions, particularly when the number of age- 
groups is large and older fish with different ages have 
similar lengths. Macdonald and Pitcher deal with such 
problems by invoking ad hoc constraints on some of 
the parameters, especially the standard deviations. In 
this paper, we explore different constraints, motivated 
biologica%ly. Instead of allowing arbitrary mean lengths 
and standard deviations in length as Hasselblad does, 
our procedure requires that the mcans and/or standard 
deviations should conform to a growth pattern. For 
many species this is reasonable because, for example, 
the growth rate slows as the fish mature and, conse- 
quently, the mean lengths are related to each other 
in some way. 

A general conclusion from this argument is that 
more biological structure leads to less ambiguity. Un- 
constrained methods may give many possible solutions 
to the same problem. By requiring that population 
characteristics (such as mean lengths at age) must bcar 
some relationship to one another on biological grounds. 
one call perhaps eliminate a significant number of pos- 
sible solutions and focus immediately on a restricted 
number which are of biological interest. Although em- 
phasis is placed on von Bertalanffy growth, other re- 
lationships among population characteristics (for ex- 
ample, between standard deviations and means) will 
also be introduced. In all cases, the underlying prin- 
ciple remains the same, namely, introducing biological 
structure into the statistical model to locate solutions 
of biological interest. In each application the research 
biologist may wish to tailor the model according to his 
own view of the biological characteristics of the stock. 

One final point should be clarified before the analysis 
begins. The terms "age distribution" and "length dis- 
tribution" apply throughout to a stock which has been 
randomly sampled. That population may be a stock at 
sea, but more often it is the total population of caught 
fish. If random samples are taken from the commercial 
catch and the gear is selective for certain ages or  sizes 
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SCHNUTE AND FOURNIER: GRQWTfI STRUCTURE IN LENGTK-FREQUENCY ANALYSIS 

of fish (as it almost always is), then, of course, the 1 - kt-1 

population at sea has not been randomly sampled. At (7) rr =i+(L-l)I-k"-l; i =  1, ..., M. 

best the results can speak for the hypothetical popula- 
tion of catchable fish, or, more simply, the entire catch 
itself. If inferences are to be made about a stock at sea, 
then the biologist may need to take samples with spe- 
cial noncommercial gear, or he may have to compen- 
sate his results from the commercial catch in some way 
to allow for gear selectivity. 

von Bertalanffy Growth 

Before introducing the structure of biologicaI growth 
into the statistics of length-frequency, it is useful to 
take a fresh look at what is implied by von Bcrtalanffy 
growth. Suppose that the fish population being con- 
sidered has M age-classes from age cr,  to where the 
ith age is 

Lct pi be the mean length of fish at age u,. Then, if 
these mcans lie on a curve of the type proposed by von 
Bertalanffy (1938), 

In this equation, L, is the theoretical length which fish 
approach as they grow oIder, K relates to the fraction 
by which the gap between current length and asymptotic 
length is reduced each year, and t, ,  is the age at which 
fish length extrapolates back to zero along the curve. 

As Ricker (1975) points out in connection with the 
work of Ford (1  933) and Walford ( 1  946), equation 
(2)  implies that 

Consequently, the distance between two successive 
mean lengths shrinks each year to the fraction 

of its former size. This reduction corresponds to a slow- 
ing in growth; as the fish get older, the change in mean 
length from one year to the next becomes smaller. 

The idea behind cquation (3)  can be used to formu- 
late a new version of the voll Bertalanffy growth equa- 
tion. Suppose that the first and final mean lengths p, 
and p, are known. Call them I and L, respectively. Then 
from (1)-(2) 

According to (3)-(4), the remaining means. from p2 
to p . ~ , - ~ ,  must lie between I and L so that each year the 
incremental growth pi+ - pi shrinks to the fraction k 
of its previous value. There is only one way to arrange 
the remaining means in this fashion. For example, if 
k - 1, the means must be equally spaced between I and 
L. If k + 1, it turns out that 

This result is proved in Appendix A. 
Equations (2)  and ('7) are merely two expressions 

for the same curve with differcnt choices of parameters; 
(2)  uses Lx,  K, t , , ,  while ('7) uses I, L, k. Also, (4)-(6) 
gives the transformatioil from the first set of parame- 
ters to the second. The reverse transformation is given 
by 

1 
(10) r o = n l - - l o g (  log k L - L - l  IkM-1 ) a 

The parameter set ([, L, k )  is much more appro- 
priate to length-frequency analysis than (La, K, t o ) .  
The biologist actually knows both the shortest and 
longest observed lengths. In practice 1, thc mean length 
of the youngest fish, lies somewhat above the shortest 
observed length; similarly L lies somewhat below the 
longest observation. Typically, the mean lengths cluster 
near L for older fish, while mean lengths for younger 
fish are more spread out, leaving noticeable peaks. 
Suppose that the biologist can formulate an opinion 
on the first and last means, 1 and L, as well as at least 
one further mean pi for some age a, ( i  f 1 or M).  Then 
these values of I, L, and pi can be substituted into (7), 
and the rcsulting equation can (in principle) be solved 
for k. Unfortunately, it is not possible to express 
analytically a general solution for k in equation (7);  
however, a few trial values of k will suggest a first 
estimate. In practice, the biologist may have an opinion 
about several mcan lengths other than I and L. Again, 
the principle of trying a few k values usually leads to a 
reasonable first estimate. 

In summary, it is not too difficult in many cases to 
obtain first estimates of I, L. and k which are biologicaIly 
meaningful. The parameters I and L are based on ob- 
servations near the shortest and longest lengths in the 
sample. Information on k then comes from an esti- 
mate of one or more means other than thc first and 
last. ConceptuaIly, k represents the fixed fraction by 
which the annual growth increment is multiplied each 
year. A choice of k near 1 implics almost uniform 
growth so that the means are spaced almost evenly be- 
tween I and L. On the other hand, a choice of k near 0 
implies that the annual growth decrcases each year to a 
small fraction of its former size. Consequently, the first 
increment in mean length is relatively large, while the 
mean lengths of older fish tend to cluster near L. 

By contrast, thc significance of La, K, and to, is not 
always obvious and sometimcs even deceptivc. For ex- 
ample, it is tempting to suppose that Lr corresponds 
roughly to the longest observed length, or  a little be- 
yond. However, if k is ncar 1 and the means are almost 
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evenly spaced, then may lie far beyond the observed 
range. If 6: is near 0, then Lm is approximately equal to 
L by (8) .  Since L is the highest mpan length, it lies 
below the longest observed length, and, consequently, 
so might Lx in this case. There have also been dif- 
ficulties with the interpretation of K and to. As Ricker 
(19'75, p. 221 ) points out, "it is misleading to refer to 
K as a growth rate" because K actually measures the 
exponential rate of approach to asymptotic size. The 
parameter K does mot involve the units of length; a 
species may grow rapidly in crn/yr and still be char- 
acterized by a small valuc of K. Also, since t,, is 
theoretically the age at  which fish have length 0, it is 
difficult to :,understand biologically why t ,  is not always 
exactly 0. This problem, of course, is merely an  artifact 
which results from extending the curve beyond the 
range of the data; however, it is still difficult to grasp 
intuitively what a reasonable value of to might be for 
a particular data set. 

Some of the problems just cited have led to con- 
troversy in the literature. For example, Knight (1968) 
shows that the interpretation of Lm an asymptotic 
Iength may lead to complete anonsense. The point is 
that the nonsense stems not from the mathematics, but 
from the biological interpretation corninonly placed on 
the results. The parameters I, L, and k merely sum- 
marize observed facts about the data. By contrast, Lm, 
K, and t,, have been used as indicators of fundamenta8 
biological characteristics of the fish. Such interpreta- 
tions are almost always purely speculative; they may, 
as Knight points out, be wrong. 

In this description of von Bcrtalanffy groevth, em- 
phask has so far been placed on the mean length for 
each age. Of course, fish of the same age do  not always 
have the same length; if they did, length-frequency 
analysis avould be trivial. Associated with each mean 
length ,u, is a standard deviation in length vi. Just as 
the means might conform to a growth relationship, so 
also the standard deviations might be prescribed by 
some rule. For example, the standard deviations might 
be a linear function of the means; that is, 

where s and S are the standard deviations r, and C ~ J I  

for ages a ,  and a,,, respectively. Alternatively, the CT'S 

might be a linear function of the ages; that is, 

A special case of both (11) and (12),  obtained when 
s = S ,  is she situation of constant standard deviation 

Notice that ( 7 )  and ( I  I )  taken together imply that 

Consequently, ii-a this case, the parameters s, S, and k 
play a role for the cp9s similar to that of I, &, and k 
for the p7s. In analogy with the means, the standard 
deviations lie between s and S in such a way that the 
gap hetween tevo successive C'S shrinks each year to the 
fraction & of its former size. If k = 1, the 09s are equally 
spaced between s and % as described by ( 12 j . 

Hn summary, there is a logical organization to the 
possibilities ( 1 1 ) to ( 14) for the a's. Equation ( 13 ) 
is a special case of (12),  which, in turn, is a special 
case of (14). Also, ( 14) is equivalent to (1 1)  when 
the means conform to von Bertalanffy growth. 

The parameters s and % are not co~glpletely analogous 
to I and L in one significant respect. FBrl%ile it is always 
true that I < L, it may happen as in (1  3 ) that ,Y - S ,  or 
even s >. S.  Many factors may contribute to size varia- 
tion among fish of one age. If these factors accumulate 
so that shorter fish fall farther behind and longer fish 
tend to do better, then it is reasonable that s < S. On 
the other hand, it may happen that younger fish ex- 
perience considerable variability in growth rate, while 
older fish tend to rcaeh a limiting size. Tn this case, as 
the animals grow older, the sma1H ones tend to catch rap, 
rather like children approaching adulthood. Conse- 
quently, s > S because an initially large size range nar- 
rows with age. The special case s - S might occur when 
the tendencies to each extreme just balance. 

Len@h-Fregaasney Statistics 

To describe the statistics of length-freq~aency Sam- 
pling, it is necessary to extend the notation of the pre- 
vious section. In a population with M age classes, let 
pi, O-,, and ri be, respectively, the mean length, standard 
deviation in length, and percentage (or fraction) of 
fish at age a, ( i  = 1, . . . , M ) .  Suppose that fish are 
sampled randomly from this population and that the 
length of each fish is determined to lie in one of the N 
intervals 

where 
xj  = XI + ( j -  4)w 

is the midpoint of thc jth interval and every interval 
has width w. 

Assume that fish lengths are distributed normally 
in each age-group. Then, given that a fish has age a,, 
the probability that its length lies in the jth intcrval is 

Here the integral (15) defines a section of area under 
a norma1 curve. Details for its numerical caIculation are 
given in Appendix C. Suppose that a total frequency f 
of fish are sampled. Then the expected frequency of 
fish having length in the jth interval is 

C
an

. J
. F

is
h.

 A
qu

at
. S

ci
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.n
rc

re
se

ar
ch

pr
es

s.
co

m
 b

y 
70

.6
7.

25
3.

25
2 

on
 0

6/
22

/1
4

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.
 



SCHNUTE AND FBURNIER: GROWTH STRUCTURE IN LENGTH-FREQUENCY ANALYSIS 

TABLE 1. Notation summary in logical order. 
- 

Classification Notation Description 
- -- 

Age descriptors 

Length descriptors 

Population parameters 

Sample size 

Observations 

Expectations 

Measure of closeness 

Measure of fit 

Index for age 
ith age 
Number of age-classes 

Index for length 
Midpoint of jth interval 
Width of each interval 
Number of length intervals 
Mean length at age at 
Standard deviation in length at age ai 
Fraction ( O / , )  of fish at age a, 
von Bertalanffy parameters for p ' ~  

Parameters for a's 
Total number of population parameters 

Number of fish sampled 

Observed frequency in jth interval 
Small number of observati_ons (integer) 
Number of intervals with fj 2 r 
Observed total from intervals with 2 r 
Probability of jth length, given age ad 
Expected frequency in jth interval 
Expected total from intervals with .{, 2 r 

Separation statistic 

x 2  statistic 
d f 

In this sum the product q times qii represents the over- 
all probability that a fish has both age ai (probability 
r i )  and a length in the jth interval (probability q , , ) .  
Since a fish with specified length must come from one 
of the age-groups, these probabilities are then summed 
over the ages to give the expected probability for each 
length interval. In other words, (16) merely states that 
the expected number of fish in each length interval is 
the sum of expected numbers broken down by age. 

When a sample is taken, of course, the observed 
freyuency of fish with lengths in the jth interval (call 
it f,) does not, in general, equal the expected nfrequency 
( f , ) .  This is true because the observation f, includes 
statistical sampling error. In practice, since the popula- 
tion parameters (such as p's, cr's, and r 's) are not 
known, the expected frequencies are also unknown. The 
problem is to determine a set of population parameters 
which would lead to expected frequencies as close as 
possible to those observed. This requires a criterion for 
'~Ioseness." In  this paper, closeness is measured by the 
separation statistic 

The expected frequencies are said to be as close as pos- 
sible to the observations when A is minirnal. The sig- 
nificance of this particular criterion will be discussed 
shortly. It has been suggested previously for this ap- 
plication by Macdonald and Pitcher ( 1979) , who refer 

to A as "twice the Mullback minimum discrimination 
information statistic."' For reference, the notation used 
here is summarized in Table 1. 

To understand exactly how this criterion might be 
applied, notice from (15) that qij depends on p, and 
mi; in symbols, 

4u " qiJ(Pi' PC). 
Consequently, the expected frequency f j  depends on the 
p's and U'S,  as well as the T'S. In symbols, from (14),  

Substituting this result in ( 17) gives 

In short, if a set of observed frequencies f i  which total f 
are given, that is, 

(18) E j, =f, 
j- 1 

'There is no clear precedent for a name for A .  Rao 
(1973; p. 352) refers to a similar statistic as the "Kullback- 
Liebler separator." Macdonald and Pitcher get their rder- 
ence to ,¶/2 fr0n.a Kullback (3959). The reason for re- 
lating A to '"separation" is givcrr in Properly d later. 
ABternativcly one can speak of "in~ormabic~n." or even 
"entropy." The factor sf 2 ic ( "') makes A ,;ppraximately 
a x%tatistic. See Appendix 8. 
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1 342 CAN. J .  FISH. AQWAT. SCX., VOL. 37, 1980 

then the equations (15)-(17) show explicitly how to 
calculate A from a givcn set of population parameters. 
The problem is to locate a particular set of parameters 
which minimizes A.  

So far, A has been described as a function of the pL's, 
cr's, and T'S. If, however, the means lie on a von Ber- 
kalanffy curve (7)  dctcrmincd by I, L, and k ,  the11 A 
can be considcrcd a function of the von Bertalanffy 
parameters, that is, 

A = 4 1 ,  L, k ,  cr's, n's). 

Similarly, if the standard deviations depend linearly on 
the means, following (1 I )  with parameters s and S, 
then 

A = ABp's, s, S, n's). 

If both the von Bcrtalanffy curve (7) and the linearity 
relation ( B 1 ) apply, then 

A = A(I, L, k ,  s, S, 7~'s). 

In short, A is always a function of the population 
parameters, hut the paramcters of interest depend on 
whether or not the means and standard deviations con- 
form to some growth law. If so, then the paramcters 
of the growth law become fundamcntal. In this way, 
as stated in the introduction, the previously separate 
issues of growth and length-frequency analysis bccome 
one. 

In  a typical length-frequency data set, there are 
length intervals wherc the observed frequency is sinall 
(say, 0, 1, 2, 3, or 4) .  Some notation is needed to 
discuss these intervals in a systematic way. POP a small 
9umber r, let N, be the number sf intcrvals on which 
f j  2 P. Also let 2,. be the total nun-mber of observations 
associated these N,. intervals. In symbols, define 

where * x ( r )  refers to the sum over those values of j for 
which f j  > r. Similarly, let 

represent the toial expected frequency associated with 
in t ends  where f j  > r. 

NoLice from (18) and (19) that g"l = f because 
C ( l ) f j  represents the sum of all nonzero frequencies, 
that is, the total number of observations, By contrast, 
from the definition ( I 6 ) ,  the expected frequencies are 
never zcro, inside or outside the observed length range. 
Consequentky, the total expected frequency on inter- 
vals where f ,  > 1 is smaller than f ;  that is, g ,  < f .  This 
shows that 

wherc, ordinarily, the inequality is strict. 
To understand the significance of the 'mmlmurn A" 

criterion, the user should be aware of three basic prop- 
erties of A.  Tkcse can now be described, with the aid 
of the notation just defined. 

PROPERTY I .  The  "minimum A" crcre't~rion lends 
to exacely the same ansaver as maximum lik~lihood. 
However, it is nurnerioalky preferable to use A as the 
crieerion, rather shan likelkrtlosd or log-likelihood. 

This should reassurc the reader unfamiliar with the 
separation statistic A.  He is actually finding the more 
familiar maximum likelihood estimates. It turns out 
that A is closely related to log-likelihood, except for a 
constant which can be large. This large constant can 
sometimes mask the behavior of the log-likelihood func- 
tion, especially when computer precision is limited. 
Consequently, A tends to be more sensitive ta the 
paramcters. Details are given in Appe~ndix B. 

PROPERTY 2 .  In cakculating A, one can omit in- 
terval.~ for which there are 12s observations. brz other 
words, (1 7) can be rrplacc~d b y  

N 
A = 2 ~ " ) f ;  log (AN;). 

j= I 

The reader may already have noticed (and even keen 
disturbed by) the fact that ( 17) is not defined if f ,  - 
0 for some j ,  since then the %ogariihm is not defined. 
However, in the limiting senses as f ,  tcnds to zero, the 
jth term of A tends to zero, (Recall that f ,  is never 
zero.) This justifies (22). In principIe, A can be con- 
sidered an infinite sum over all possible length intcrvals; 
howeyer, the only nonzero terms in the sum are those 
with f j  > 0. Bt follows that A docs not depend on how 
the observed fish lengths are grouped, except through 
the original choice of intervals. This fact has practical 
significance, as discussed later in the examples. 

PROPERTY 3. The scparatioaz ,s.tatisfic A i . ~  d w a y ~  
positive or zero ~vlaen csreditisre (21) is true, In fact. 
A is zero 0al39 i f  

for every j. 
The fact that A is positive justifies calling it a "sepa- 

ration," particularly since the separation is zcro oinly 
if expccted and observcd frequencies agrcc completely. 
The inequality A 2 0, which follows from (2  1 ) , is one 
of thc basic incqualitics of information theory. It is 
proved, for example, by Rao ( 1  973, p. 59).  This in- 
equality is not immediately obvipus because A con- 
tains tecms hoth positive (when !? > f j )  and negative 
(when f ,  < jj).  Notice particularly that, if (23) holds, 
them A = 0 because log 1 - 8. In practice, the pre- 
dicted frequencies do not exactly equal the observa- 
tions, and the n-minimum value of A is positive. 

Criteria for Testing the Fit 

In length-frequency analysis, the separation statistic 
A (or, for that matter, any reasonable fitting criterion) 
is a distinctly nonlinear function of the population 
parameters. Unlike linear estimation, such as ordinary 
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SCHNUTE AND FOURNIER: GROWTH STRUCTURE IN LENGTH-FREQUENCY ANALYSIS 1343 

linear regression, nonlinear estimation problems do not 
always have the convenient property that there is only 
one solutiom. In fact, length-frequency analysis typically 
leads to many solutions. By armalogy, one can think 
of the fact in elementary algebra that the simplest non- 
linear equation. a quadratic, usually has two solutions, 
while a linear equation has only one. In practice, it is 
often possible to reject one quadratic solution on 
physical grounds. For example, one solution might be 
negative when the solution of interest is positive. How- 
ever, there is no general theory about which solution 
is right; the choice depends on the situation. Similarly 
in length-frequency analysis, the user must select 
among competing solutioms, according to his knowledge 
of the situation. No general theory will make that 
choice. 

A related problem is that the user may be unsure 
of the correct model for his data. H e  may not know 
precisely how many age classes there are, or what sort 
of structure (if any) to impose on the means and stand- 
ard deviations. Often a diversity of different models 
will fit the data rather well. This problem is typical for 
length-frequency analysis; the data can be almost too 
easy to fit. 

A simple criterion for selecting among various pos- 
sibilities would be to pick the one which gives the lowest 
minimum value of the statistic A. Unfortunately, as ex- 
amples given later ilIustrate, this may result in a poor 
choice. Generally (although not necessarily), the 
greater the number of parameters in a model, the lower 
the minilnurn value of A. This consideration suggests 
the usual application of a x v e s t  in which the number 
of degrees of freedom decrcases as the number of esti- 
mated parameters increases. Such a test is based on a 
theorem of statistics, given precisely by Cram&- (1946, 
section 30.3). It states that a certain statistic, evaluated 
at the maximum likelihood estimates, has asymp- 
totically (for  large sample size) a X"istribution. 

One way to construct a X%tatistic for this problem 
is to select a small value of r (say 1, 2, 3, or 4) .  and 
tken lump together all those length intervals on which 
f i  < r .  The corresponding statistic, in the notation of 
(19)-(20) above, is then 

A " ( f .  -- f.)' (K - 2 1" 
(24) Br = C(7) + u. 

j=l .fj .f - gr 

Here B, is associated with % + 1 length groups, 
namely the N,. intervals where f j  > r and one further 
group of intervals with f - g, observations. This sug- 
gests a number of degrees of freedom 

where P is the number of parameters estimated. 
Unfortunately, Cram6r's theorem cannot be applied 

directly to the statistic B,. for two reasons. First, except 
when r - 1, the groups of intervals used in calculating 
B, differ f r o n ~  those used in obtaining the likelihood 
estimates (by minimizing A ) .  Second, the method of 
selecting groups of intervals for B, depends directly on 

the observed frequencies f j .2  111 fact, the distribution 
of B, is simply not known in general. It seems reason- 
able to conjecture that it might be approximately X2 

distributed, at least for values of r large enough to guar- 
antee several observations in evcry length group (say, 
r = 3 or 4 ) .  We do not attempt here to develop a com- 
plete mathematical theory for the use of B , .  Instead, 
we take a strictly pragmatic approach, as described in 
the next paragraph. 

For a given model, we first compute the required 
parameter estimates by minimizing A.  This avoids any 
arbitrary grouping of the data, other than the initial 
choice of length intervals, at least as far as the estimates 
are concerned. (See Property 2 for A, and the subse- 
quent discussion, above.) Once the estimates are 
known, we then calculate B,. for several values of r 
and compute the corresponding X2 percentage levels for 
D,. degrees of freedom. (The necessary formulas are 
given in Appendix C) . In comparing solutions obtained 
from various models, where each model may have more 
than one minimum point, we simply rank the results 
according to the Xpercentage levels. In this way, we 
can explore two questions: (1)  are the rankings con- 
sistent for various values of r, and (2)  do the highest 
ranked choices appear most reasonable biologically? 
The answcrs suggest that the statistic B,. can be a useful 
guide, but not a final criterion. for sorting out multiple 
solutions to a length-frequency estimation problem. 

Appendix D gives details of computer methods used 
to implement all the procedures described in the pre- 
vious paragraph. 

Example 1. Northern Pike 

The first data set considered here pertains to North- 
ern pike (Esox lucius) from Heming Lake, Manitoba. 
It was originally presented by Macdonald (1969) and 
then reanalyzed a decade later by Macdonald and 
Pitcher (1979). The observed frequency data for this 
example and the next one are listed in Table 2. These 
data (previously published in graphical form) are 
needed for reference in the discussion here. 

As Macdonald ( 1  969) describes, the pike sample 
consists of 523 fish. The length of each is known, as 
well as an estimate of its age (between 1 and 5 yr) from 
scale analysis. This allows the results from length-fre- 
quency analysis to be compared with a standard. The 
first line in Table 3 (example 1.1 ) shows the popula- 
tion parameters, i.e. p's, V'S, and r's, determined by 
scale reading. The next line (example 1.2) shows the 
final results from length-frequency analysis published 
by Macdonald and Pitcher ( 1  979).  Obviously, the 
agreement between examples 1. I and 1.2 is quite good. 

'In theory, the method of grouping should depend on the 
expected frequencies f, .  Since these frequencies are usually 
unknown, this requirement of CransCr9s theorem is almost 
always violated in practice. The svntistis B ,  is at least based 
on a prescribed rule for grouping, not an ad hoc choice s f  
the investigator. 
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TABLE 2. Observed frequency data fo: pike apd abalope. Frequencies shouId be read first 
across and then down. (For example, f ;  = 4, f 2  = 10, f a  = 21 in the pike data.) 

Bike frequencies. N = 30, .XI = 19, xao = 77, w = 2,,f = 523 
4 I0 2 1 11 14 3 1 3 9 70 71 44 
42 36 23 22 17 6 2 12 11 8 3 
6 6 3 2 1 1 1 0 1 1 

Abalone frequencies. N = 62, XI = 8, xs 2 = 130, w = 2, J' = 43 1 
2 7 7 4 0 0 0 0 8 1 
1 4 3 5 7 3 5 1 0 3 
0 3 t 0 3 2 5 9 8 8 15 
8 11 13 10 15 13 11 12 14 12 
17 14 17 18 28 18 11 10 11  9 
7 8 10 5 6 4 4 7 3 4 
0 1 

R2acdotaald and Pitcher arrive at the estimates 1.2 
by assuming U, -- 4, <T* -= 5, and a, - 6, as shown. 
Before minimizing A, they also lump the last six fre- 
qt~encies (1, I ,  1, 8, 1, 1 in Table 2)  to obtain a final 
group of five fish. They argue (p. 992) that this inakes 
the model more robust to nonnormality. Nevertheless, 
it should be recognized that lumping constitutes an ad 
hoc decision with regard to the data. One could, instead, 
lump the last four or five frequencies into a single 
group. A consequence of this procedure is that the 
lumped data set does not distinguish between five pike 
with lengths 67 cm and five pike with respective lengths 
67, 69, 7 1. 75, and 77 cm, as observed. Example 1.3 
(Table 3)  shows the estimates that are obtained with- 
out lumping the data. Not surprisingly, p, turns out 
to be larger. In fact, because of the fixed standard 
deviations cr,, a,, and u,, the last three means all turn 
out to be larger in example 1.3 than in 1.2. This shift 
results in an increase (from 49.5 to 55.6% ) in the ap- 
parent proportion of age 2 fish. 

Example 1.4 (Table 3) shows a minimum point for 
A obtained without lumping the data, but with the as- 
sumption that the standard deviations are linear on the 
means, as in (1  1) .  Notice that, like solution 1.2 of 
Macdonald and Pitcher ( 1979), example 1.4 also gives 
reasonable agreement with the results from scale 
analysis (example I .  1 ) . The interesting difference is 
that 1.4 is obtained ( i)  without assuming explicit values 
for u,, <TI,  and U, and (ii) without ad hoc lumping 
of the data. Only the linearity relation (1  1) is assumed. 
Example 1.5 shows a siinilar result based on the as- 
sumption that the standard deviations increase linearly 
with age, as in ( 12). Con~parison between examples 
2.4 and 1.5 shows that the two linearity assumptions 
( 8 1 ) and ( 12) lead to very nearly the same result. 

This discu5sion is not intended as criticism of solu- 
tion 1.2 obtained by Macdonald and Pitcher (1979). 
but rather as an illustration of one more point of view. 
Part of their approach consists in lumping the data, as 
deemed appropriate, for robustness. Our approach is 
to avoid decisions in regard to the data as discussed 
earlier in connection with Prspcrty 2 for A.  Instead, 

we put decisions on structure directly into hypotheses 
of the model. We utilize data lumping later, only as a 
tool for assessing the fit. A useful outgrowth of our 
approach in this case is that we need make no assump- 
tions on particular valucs for the a's. Our unknown 
standard deviations are s and S. I n  Macdonald and 
Pitcher's solution 1.2, the unknown deviations are U, 

and u,, while a,, u,, and U, are presumed known." 
Some assumption about standard deviations is cer- 

tainly necessary for this problem. Examples 1.6 and 1.7 
illustrate two minima for A in which there is no re- 
striction on the v'~. (Incidentally. these examples show 
how A can have more than one local minimum.) Both 
solutions exhibit a peculiar feature: one of the stand- 
ard deviations turns out extremely small. In each case 
an entire age-class is used to explain some minor amount 
of noise in the data. For instance, in example 1.6 the 
fifth age-class consists entirely of the two observations 
which comprise the small extreme right-hand mode of 
the histogram of observed frequencies shown in Fig. 1. 
From that point of view, example 1.6 would be an 
excellent fit if indeed the final mode comprised a whole 
age-group. In fact, both examples 1.6 and 1.7 suggest 
that, without some structure imposed on the standard 
deviations, the analysis points to a solution comprising 
only four groups with significant numbers of fish. Ex- 
ainple 1.8 shows the solution obtained with this as- 
sumption, M = 4. Aside from components with minor 
t~umbers of fish, examples 1.6 to 1.8 look much the 
same. Biologically, example 1.8 is very reasonable if 
the combined group of age 4's and 5's is regarded as a 
single group of undistinguishable fish. 

It is well known (see, for example, Macdonald and 

3While the final draft of this paper was in revision, we 
discussed these results with Prof Macdonald and received 
a letter in reply showing another interesting result obtained 
with log-normal components. Certainly, no single approach 
can be considered definitive. Ordinarily, the practitioner will 
try several approaches to discover that which best suits his 
knowledge about the biological background for the data. 
Tn making a final decision, the x 2  analysis given here may 
prove useful. 
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SCHNUTE AND POURNIER: GROWTH STRUCTURE IN LENGTH-FREQUENCY ANALYSIS 1345 

TABLE 3. Examples of means, standard deviations, and percentages for various fits to the pike data. All examples except numbers 
1 .1  and 1.2 correspond to minima for A. 

Mean lengths (cm) Standard deviations (cm) Percentages (as fractions) 
Example ---- ------- L ---- 

no. PI P Z  Pa 1*4 1*5  6 1  6 2  6 3  cp4 ~5 1 7;z 3 7 4  ~5 A 

aTrue results from scale reading, published by Macdonald (1969). 
blength-frequency solution published by Macdonald and Pitcher (1979). 

Pitcher 1979, p. 991) that solutions like 1.6 and 1.7 
with standard deviations less than the interval width 
may be meaningless. The question is, how can they 
be avoided? For all the examples in Table 3, the values 
of A are lowest by far in examples 1.6 and 1.7. Search 
algorithms to minimize A will try to reach these points. 
Ad hoc constraints, such as lower bounds on the a's, 
may simply result in a solution tight on the constraints 
as the algorithm seeks the low point. In  a biological 
context, it may be more appropriate to invoke a gen- 
eral hypothesis, such as linearity of the U'S, to avoid 
unreasonable minima. In other contexts, such as the 
analysis of physical X-ray spectra, this hypothesis may 
be completely inappropriate. These remarks illustrate 
a general point of this paper: the structure of the 
parameters often distinguishes biological applications of 

FIG. 1. Length-frequency histogram and two curves of 
expected frequencies for the pike data. The solid curve per- 
tains to example 1.1, and the broken curve to example 1.4. 

mixture analysis from applications in other fields. The 
pike example ~rnderscores the importance of the U'S. 

In practice, the biologist may be far more interested in 
the 'TT'S and p's than he is in the U'S, yet the structure 
of the a's may determine the solution he finds. 

All examples in Table 3 lead to a good match be- 
tween expected and observed frequencies. Figure 1 
shows the expected frequency curves for examples 1.1 
(solid curve) and 1.4 (broken ca.lrve) in relation to the 
observed frequency histogram. Visually, both curves 
are close to each other and to the histogram. Similarly, 
the other examples in Table 3 also correspond to rea- 
sonable fits from the point of view of matching the 
observations, even though the values of A vary con- 
siderably anlong the examples. This illustrates the multi- 
plicity problem discussed earlier: the data are almost 
too easy to fit. 

Table 4 shows the results of a X 2  analysis applied to 
solutions 1.3 to 1.8 from Table 3. In  each case, both 
the statistic B,. and the corresponding XVevel are cd- 
sulatcd for r = 1, 2, 3, and 4. The resulting X 2  levels 
are then used to rank the various solutions. Table 5 
lists the rankings obtained in this way. As described 
earlier, the theoretical basis for this process may be 
incomplete, but the results are interesting. Rankings 
are identical with r = 2 or 3, and very similar with 
r - 4. For all three values, r -- 2, 3, or 4, the highest 
ranked solutions are the most biologically reasonable 
ones. namely 1.4 and 4.5 in which the U'S increase 
linearly. The two lowest ranked solutions, 1.6 and 1.7, 
are those in which one of a's is unacceptably small. 
Examples 1.8 (with only four distinguishable age- 
groups) and 1.3 (with threc prescrit.red U'S) are ranked 
in the middle. In short, for r. -= 2, 3, or 4, the XQank- 
ings correspond well with biological validity in the 
results. 

When r = 1, the XQankings are less meaningful 
biologically because the unacceptable solution 1-6 ranks 
essentially the same as the acceptable solutions 1.4 and 
1.5. Table 4 shows ~ V e v e l s  for these threc cases which 
are almost identical (65.1, 65.4, 65.5% ) when r - 1. 
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TABLE 4. Quantities for assessing the fit of examples in Table 3. Examples 1.1 and 1.2 are excluded because they do not csrre- 
spond to minima for A. 

Dr 4 x 2  Bevel ((x ) 
Example ---- 

no. P r - 1  r = 2 r = 3  r = 4  A r = B  r = 2  r = 3  r = 4  r = 3  r = 2 r = 3  r = 4  

This difficulty confirms expectations about problems 
with a Xz analysis when r = 1. The theory suggests 
that B, simply may not be x2 distributed because there 
may be too few obscwations in some length-groups. 

A related comment applies to the statistic A .  For 
theoretical reasons given in Appendix B, the statistic A 
is approxinlately equal to B,. (See also footnote 1.1 
This approximation is evident in the examples of Tablc 
4. However, in view of the problems with B,, it may 
be wrong to suppose that A is xVistr ibuted.  This 
difficulty underlies the approach taken hcrc whereby 
the "'minimerm A" criterion is used to obtain parameter 
estimates and then the statistic B, ( r  > 2)  is used to 
rank various proposed solutions. In practice, it appears 
advisable to check severaI values of r to see how the 
rankings arc affected. 

Example 2. Northern Abalone 

The second data set considered here pertains to 
Northern abalone (Ha?io tis karn tschatkana) from the 
Quecn Charlotte Islands, British Columbia. 

It appears, along with numcrous other data, in the 
report by Brcen and Adkills (19793. The particular 
abalone population considered here is a composite as- 
sociated with all Nereocystis communities in the sam- 
pled /region. (See Fig. 54 of the report.) There are 
two minor modifications of the published data. Three 
large animals, deemed by P. A. Breen (personal com- 
munication) to lie in a separate group from all the 
rest, are omitted. Also, to reduce con~putation, the fre- 
quencies are grouped in 2-rnm intervals, rather than 1- 

TABLE 5 .  Example numbers placed in rank order by the x 2  

levels in Table 4. For each value of r, the six examples are 
ranked highest to lowest, left to right. 

Rank order 

man as reported. This grouping probably reflects 
realistic limits in determining abalone size (I?. A. Brecn 
personal communication). The data, so revised, are 
listed in Table 2. 

There is no known independent method of aging 
this spccics. Consequently, a standard, like example 1. I 
for the pikc data, is not available for comparison with 
results from length-frequency analysis. The precise 
number of agc-classes is not even known, but it is he- 
lieved to be much larger than 5. The length-frequency 
histogram in Fig. 2, with its many modes, suggests that 
this might be true. In spite of these problems, some 
independent information is available on growth. 
Abalone have been tagged and recovered B yr Iater to 
nleasalre annual growth (Quayle 197 1 ) . Using a WaI- 
ford plot sf  these size data, one can estimate Lo and k. 
(See Ricker 1975.) In this way Breen (1980) obtains 
a value of Lr equal to 128.9 mm and k equal to 0.766. 

In view of this evidence, it is reasonable to investi- 
gate the results of length-f requency analysis based on 
von Bertalanffy growth. As a start, consider somc pos- 
sible age-groups suggested by modes in the histogram 

1 1.4 1 .6  1.5 1 . 3  1.8 
2 1.5 1.4 1.8 1.3 1.7 FIG. 2. Length-frequency histogram and two curves of 

3 1.5 1.4 1.8  1.3 1.7 e 6  expected frequencies for the abalone data. The solid curve 

4 1.4 1,5 1.3 1.8 1 - 7  .6 pertains to example 2.1, alld the broken curve to example 
2.4. 
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TABLE 6. Examples of means (mm), standard deviations (n~m), and percentages (as fractions) for various fits to the abalone 
data. All examples correspond to minima for A .  

Example 
no. Quantity j = ]  i = 2  i - 3  i = 4  i - 5  i = 6  i - 7  j - 8  i - 9  i = l O  i = l l  A 
- -- 

Modesn 
Est. ,uCLIsb 

2.1 ,u's 
a's 
T's 

2.2 ,u's 
a's 
s's 

2.3 p's 
LT's 
T's 

2.4 p's 
a's 
T's 

-- -- - 

"From Fig. 2. 
Wrom a von BertalanfTy curve with 6 - 11, L = 122, k = 0.85 (or L ,  - 149.2, K = 0.1625, t o  -- 0.5288). 

of Fig. 2. Table 6 lists a set of 10 major modes selected 
by eye. The nine gags between them (25, 16, 14, 10, 
10, 10, 6, 10, 10 mrn, respectively) appear to shrink 
somewhat in von Bertalanffy fashion, but with a prob- 
lem toward the end. One possible way to deal with 
this problem is to add an extra age-class, thus making 
two small gaps in place of one large one at the end. 
For instance, the parameters 1 = -  I1 mm, L = 122 mm, 
and k = 0.85 with 11 age-classes generate a set of 
means reasonably close to the observed modes, as shown 
in Table 6. Here k and L correspond to the first and 
last observed modal lengths, and k is found by trial 
and error to give reasonable approxilnations for the re- 
maining modes. In this way, the histogram itself sug- 
gests first estimates for I ,  L, and k. Incidentally, 
the corresponding parameters, L, = 149.2 mm, K = 
0.1625, and t,, = 0.5288 are not amenable to such 
simple intuitive rnotivation. (For example, L, lies well 
beyond the range of data.) This illustrates the utility 
of the new von Bertalanffy parameters for length-fre- 
quency analysis. 

When the eye scans the histogram in Fig. 2 and 
seeks to identify age-classes with the various modes, it 
tends to pick out clusters with roughly the same width. 
Example 2.1 in Table 6 reflects this perception. It is a 
solution with means on a von Bertalanffy curve, con- 
star~t standard deviations, and 11 age-classes (in accord 
with the last paragraph). The solid curve in Fig. 2 
represents the predicted frequencies for this case. The 
various age-groups show up distinctly as either modes 
or bends in the curve. Not surprisingly, in Table 6 the 
age-class next to the last registers zero percentage of 
the fish, since it appears as an artifact to accommodate 
von Bertalanffy grsetlth. In Table 7, the parameters 1, 
L, and k for example 2.1 turn out remarkably close 
to the initial estimates of 11, 122, and 8.85, respectively. 

In this case there are 14 parameters (1, L, k, s, and 
10 T's), rather than 32 as would be required by an 
unstructured analysis of 1 1 age-classes. Unfortunately, 
in spite of the comparatively low number of parame- 
ters, Table 8 shows that the fit is still not good enough. 
Example 2. I would be rejected by X 2  analysis, for each 
value of r, even at the 5% cutoff level. Apparently, the 
requirement of constant standard deviations is too re- 
strictive. In fact, Fig. 2 suggests this. For instance, the 
solid curve fits the first age-class poorly, because the 
estimated value of CF, is too large. This forces the first 
mode to be too wide and low compared with the cor- 
responding mode on the histogram. 

Example 2.2 (Table 6)  seeks to overcome this prob- 
lem by allowing the standard deviations to be linear 
on the age. Thc value of A drops, and the first age- 
class is accommodated much better. However. the C'S 

now become very large for the older age-classes, be- 
cause they must increase by a fixed amount from each 
age to the next. In fact, O-S, is SO large that the ninth 
age-group accounts for all observations above 284 mm. 
This suggests a different perception of the histogram in 
Fig. 2. Perhaps the modes at higher lengths do not 
correspond to separate age-classes, but are just noise 
on the descending limb of a single normal curve. 

One way to avoid the rapid growth in standard devia- 
tions of example 2.2 is to let them be linear on the 
means. so that the O-'S reach a limiting size with the p's. 
Example 2.3 illu~trates a solution with this assump- 
tion. The results in Table 6 are similar to example 2.2, 
except for thc higher age-groups. In particular, example 
2.3 contains a final age-group quite isolated from all 
the rest. It appears that for ihc abalone population, 
with its numerous age-groups, the particular linearity 
assumption. ( 1  1) or  (12),  on the CF'S may be important. 
This contrasts with the situation for pike, where either 
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TABLE 7. Parameters for the means and standard deviations in the fits to the abalone data 
cited in Table 6. The standard deviations are either constant (CO), linear on age (LA), or 
linear on the means (Lhl), 

Example Age- 
no. classes I L k La K to  a's s S 

TABLE 8. Quantities for assessing the fit of examples in Table 6. 

DT BT X2 level (96) 
Example - 

no. B r = l  r = 2 r = 3  r = 4  A r - 1  r = 2  r = 3  r = 4  r - 1  r = 2 r Z 3 r = 3  

assumption gave similar results. (See examples 1.4 and 
1.5.) 

Examples 2.2 and 2-3, especially the isolated final 
age-group of 2.3, suggest a new approach to the analy- 
sis, Perhaps the animals grow rapidly at first, forming 
identifiable age-classes, and then finally growth slows 
so much that all animals after a certain age appear as a 
single group. These ideas motivate example 2.4. Were 
the first six age-classes have means on a von Bertalanffy 
curve, while the last mean is independent of the rest. 
The standard deviations, including the last, are pre- 
sumed linear on the means.  here-are 12 parame&rs: 
I, L( = k, p7, s, S, and 6 T'S. The predicted fre- 
quencies for this case are represented by the broken 
curve in Fig. 2. It is less undulating tha t  the solid curve 
(for exarnple 1.11, reilecting fewer age-classes. The 
general fit, especially for the first two age-classes, is 
distinctly better than in example 1.1. Notice also that 
the broken curve descends steadily through the higher 
modes of the histogram. which are regarded by the 
statistical model as noise. 

Of the four length-frequency sol~ations given here 
for the abalone data. examplc 2.4 is certainly the most 
attractive. Table 8 shows that even though example 2.4 
has the fewest parameters, it gives rise to the lowest 
minimum value of A.  Not surprisingly, then, the x" 
analysis ranks example 2.4 highest. Incidentally, in this 
case. unlike the earlier one for pike, the ranking of 
so1utio1.a~ is the sanne for r -- 1, 2, 3, or 4. Finally, 
Tablc 7 shows that examplc 2.4 corresponds to values 
of I,, (132.73 m n ~ )  and k (0.8059) which agree rea- 
sonably well with the values (I,, =- 128.9 mm, k - 
0.766 j obtained independently from other data by 
Breers ( 1988). 

These four cxarnples certainly do not exhaust the 

possibilities for discussion of the abalone data, and 
they should not be regarded as final biological con- 
clusions. They do, nevertheless, illustrate how growth 
structure aids the discussion of Bength-frequency analy- 
sis. Notice particularly how these methods assist in 
determining the number of age-classes. Indeed, part of 
the abalone analysis involves deciding how many age- 
classes are discernible. Growth structure appears to be 
a useful tool in making that decision, Possibilities for 
future analysis of the abalone data include a parametric 
description of the T'S to reflect mortality and less re- 
strictive descriptions of the p's and v's. 

Conclusions 

Thc examples in the previous two sections are in- 
tended to help the reader develop intuition on the use 
of growth structure in length-frequency analysis. Al- 
though the problem of multiple solutions makes a gen- 
eral theory impossible, the examples do suggest severd 
basic conclusions or guidelines. These are presented 
here. 

1 .  Because length-frequency analysis may lead to 
many solutions for the same data set, subjective deci- 
sions must often be made on biological grounds. One 
way to introduce biological opinion is to require that 
the means and standard deviations conform to an as- 
sumed growth model. 

2 The x2 level associated with the statistic B, in 
(22) can be helpftal for choosing among competing 
solutions, although it should not be regarded as 
definitive. Solutio~l rankings by X2 level tend to be 
consistent for low values of r > 1. On purely statistical 
grounds, the x2 analysis may suggest actually rejecting 
only a few of many competing solutions. 
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3.  Even if the percentages and  means are  t h e  parame- 
ters of greatest interest, the structure of the standard 
deviations may  be the  most important feature in de- 
termining which solution is obtained. If the a's are  
assumed to have linear growth, it is generally more  
realistic to  presume linearity o n  the means (1 1 1 ,  rather 
than  o n  the  ages (121, particularly when the number  
of age-classes is Barge. 

4. A von Bertalanffy structure fo r  the means is some- 
times too restrictive, but  i t  c a n  he useful f o r  suggesting 
the  number  of discernible age-classes when that num- 
ber is unknown. I t  can also be  used to  check the  results 
of length-frequency analysis against a n  independent 
measure of growth f rom a tagging study over 1 yr. 

5. Reasonable estimates fo r  I, E ,  and  k can  often be  
obtained directly f rom the  length-frequency histogram. 
By contrast, the corresponding values of Lr, K, and to 
may be mush  less apparent and cven misleading. 

6. I n  thc minimization process, the parameters I, E ,  
and k tend to be  much more stable numerically than 
L,. K ,  and  t , .  

7. Length-frequency analysis tends to  lump the  final 
age-classes together if they are  in  close proximity o r  
contain small percentages of fish. I n  such cases it may  
be impossible to distinguish the  final ages, and the  best 
approach may  be  to assume that all fish beyond a cer- 
tain age comprise a single group. 

We are grateful to Prof Peter Macdonald for numerous 
helpful comments on this p r o b l ~ n ~ .  He sent us an advancc 
copy of his paper with D r  Pitcher. a listing of the programs 
u s d  in their data analysis. and a sample run. We have 
been very fortunate to have their published work available 
as an example for investigating how growth-structured 
analysis might differ from earlier methods. We are also 
grateful to Dr  Paul Breen for extensive advice regarding 
the abalone data which he and Bruce Adkins collected in 
1978. 
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Appendix A. De~vation 0% Equalion (7)  

Eqelatic~n (31, which is an alternative form of the von 
Bertalanffy growth relationship Q2),  follows from three 
assumptions, namely, 
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(A31 P*l  = L' 

Here, (A1 ) follows from (3)-(4), and (A2) and (A3) are 
the definitions of 1 and L. When k = 1, ( A l )  shows that the 
means are evenly spaced, as stated in connection with (7).  
When lc =+ 1, ( A l )  can be regarded as a second-order dif- 
ference equation. It is linear with constant coefficients. The 
boundary conditions for (A1 ) are (A2)-(A3). 

One possible solution to (A1 ) is 

for some constant a. Another possible solution, as the 
reader may verify is 

for some constant p. The theory of difference equations 
states that m y  solution to ( A l )  must be a combination of 
these two solutions, that is, 

Substituting (A4) in (A2) md (A3) gives 

Equations (A5)-(A6) can be solved for CY and p. Sub- 
stituting the solutions in (A4) gives (7).  

Another approach, independent of the one just given, 
involves showing algebraically that (4)-(6) and (8)-( 10) 
are inverse transformations of each other. It can then be 
verified that (4)-(6) transforms (2) into (7) ,  and (8)- 
(10) transforms (7) into (2).  

Appendix B. EikeIihaad, Separation A, and x2 
The 1og:ikelihood function C associated with the ob- 

servations f is given by 

(See, for example, van der Waerdzn 1969, p. 186). In 
the sum ( B l ) ,  the jth term is 0 when f j  = 0, consequently, 

where the special C notation is defined in connection with 
( 19). I t  follows from (B2) and (22) that 

In  (B3) notice that, while A and C depend on the popula- 
tion parameters, the summation depends only on the ob- 
servations. As functions of the p'vameters, then, the 
separation statistic A is minus twice the log-likelihood plus 
a constant. This shows that C is a maximum when A is a 
minimum, and vice versa, as stated in Property 1. 

The constailt term in (B3) is always negative, and it 
can be quite large. For example, with the pike data it is 
-2991.29. In Table 3, the values of A go from about 13 
to 21, producing a change in the first decimal place from 
the smallest to the largest value. By contrast, the vallues s f  
C for these examples would go roughly from -1506 to 

-1582, resulting only in a change of the fourth decimal 
place. This substantiates the claim in Property 1 that, if 
computer precision is limited, A makes a better objective 
function than C. 

The value of A has the added advantage that it is more 
meaningful than C because it approximates the x 2  statistic 
B , .  If x is near 1, then 

(B4) log x (x  - 1) - %(x - 

When A ig minimized, the expecied frequency f, is near the 
observed f,, so that the ratio f l i f j  is near 1. It  follows from 
(22) and (B4) that 

it' 

A = - 2 C(') log ( j j /A )  
j= 1 

N 
= 2( f - g1) 4- C(l) (h - h)2/j. 

j=1 

In the final sum above, one can substitute f l  for jj in the 
denominator with the same degree of approximation already 
used in applying (l34). This gives 

N 
035) A G S 2 ( j -  g ~ )  + C")(f; - . f j ) 2 / j j .  

J= 1 

The definition (24) for B1, taken with the fact that gr = f 
(as discussed in connection with ( 19) ) , shows that 

It follows from (I35)-(B6) that 

Ordinarily, gl (the sum of expected frequencies on inter- 
vals with r j  > 1) is close to f at minimum A.  Siilce f > g,, 
(B7) suggests that A should typically be slightly larger than 
B,, as it is in all the examples of Tables 4 and 8. 

Appendix C. The Normal Integral and x2 Levels 

At biological laboratories, the library 0% mathematical 
literature is sometimes quite limited. As a result, some 
readers of this paper may have difficulty locating methods 
to calculate the normal integral (15) and to determine x 2  

levels associated with the statistic B,. For convenience, 
suitable formulas are cited here. 

Hasselblad (1966) suggests calculating qi j  in f 15) by the 
approximation 

Unfortunately, (C1 ) can be a poor approximation when 
w is as large as one of the a's. This is the case in all pike 
examples, where a, is about 1.8 and w is 2. For the sake of 
improving (CI ) ,  define a function F ( z )  sequentially as 
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follows: 

where the constants bo to b5 are, respectively, 0.2316419, 
0.3 19'381530, -0.356563782, 1.781477937, - 1.821255978, 
and 1.330274429. Also define z+ and z- by 

Then a good approximation to qlj is 

It  turns out that the approximations ( C l )  and (C2) are 
close if w is small compared to a t  because then the dif- 
ference z+ - z-  is small compared to 1. The approxima- 
tions leading to (C2) come from Anon. (1964). 

The calculation of x' levels involves two functions defined 
for z > 0 and an integer 1 1 .  namely, 

j , 11 even 
G ~ ( N )  = j= I 

I (n+l)/2 

~7 11 ( j  - +), i1 odd 
j= 1 

Here the quantity Ga(n) is, in fact, the gamma function 
calculated at 1 + n/2. The x2 level, H, for the statistic B ,  
with D ,  degrees of freedom, which corresponds to the 
probability that the statistic has a value B,  or larger, is 

Formula (C3) is used to obtain the final four columns in 
Tables 4 and 8. The theoretical basis for (C3) is given by 
Melsa and Sage ( 1973 ). 

Appendix D. Computer Methods 
Numerous algorithms are available for performing a 

computer search to locate a function minimum. Some re- 
quire the function's derivatives, and others, called direct 
search methods, do not. Although derivative-based 
algorithms are usually more efficient of machine time, direct 
search methods typically involve less human time because 
they do not require the user to calculate and program 
derivatives. In this application, where the function A can 

depend on the parameters in many different ways, it is par- 
ticularly inconvenient to produce the appropriate derivatives 
for each case. Macdonald and Pitcher (1979) en~ploy the 
Nelder-Mead algorithm, a remarkably simple direct search 
technique. The idea behind the method was originally for- 
mulated by Nelder and Mead (1965). Later, Q'Neill ( 1871 ) 
translated it into a computer program. Various corrections 
have since been suggested by  Chambers and Ertel (1974), 
Q'Neill (1974), Benyon (1976), and Hill (1978). All 
minima reported here were located by this technique. 

If a direct search method is used, this paper contains all 
for~nulas necessary for writing a computer program to 
generate results like those in Tables 3-8. For convenience 
in describing the calculatioils, let z,, . . ., zp be the P 
parameters used by the statistical model. Suppose that the 
first PI Z'S determine the p9s, the next P, z's determine the 
a's, and the final Ps z9s determine the 7~'s. (Thus PI + P2 + 
Ps = P.) For example, if the p's are required to lie on a 
von Bertalanffy curve, then PI = 3 with zl = I, zz = L, 
z:, = k. If the p's are unrestricted, then Pa = M with Z( = 
pi for i from 1 to M. Similarly P, = 2 if the Q'S are linear, 
and Pz = M if the a's are unrestricted. In all examples here 
Pa = M - 1, because the last percentage is determined by 
the previous ones. 

In addition to the direct search algorithm, the user must 
supply program modules to do the following eight tasks: 

1. Calculate the p's from the first Pa 2's. This might involve 
(7). 

2. Calculate the a's from the next P, z's, as well as the p's 
if required. This might involve one of (1 1 )-( 14). 

3. Calculate the n9s from the final P3 z's. 
4. CalcuIate the j's from the p's, a's, rind T'S. This involves 

(15)-(lg),  as well as (C2). 
5. Calculate A from the f's rmd 3's. This involves (22). 
6. Calculate, and add to A .  penalty functions which are 

large at forbidden parameter values, such as T* < 0 or 
Ti > 1. 

7. Given P, calculate B ,  and D ,  from the f's and f's. This 
involves (19)-(20)' (241, and ( 2 5 ) .  

8. Calculate a x' level H from E d ,  and D,. This i~avnlves 
(C3). 

These programs should be kept modular so that individual 
steps, especially 1 and 2 above, can readily be adapted to a 
particular model. 

After these tasks have been programmed, they can be 
used by two master programs. In the first, the search 
algorithm calIs steps 1-6 to compute A at the point (2 ,  . . ., 
zp). This allows the algorithm to explore P-dimensional 
space and locate a minimum point. The penalty functions 
(step 6)  play an important role in forcing the algorithm to 
avoid unreasonable parameters. For example, 1URnt%might 
be added to A if Ti < 0 and 10"l - r i I 2  might be added 
if Ti > 1. Other parameters might also be restricted if the 
user finds it appropriate. The second master program, which 
is used after a minimum has been located, calls steps 1-4 
and 7-8 to determine the relevant x 2  levels for the nlinimum 
point. 
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