[ADMB Users] ADMB won't optimize model
Chris Gast
cmgast at gmail.com
Thu Apr 1 12:35:55 PDT 2010
Hello,
I'm a new user to ADMB, but not to C++, R, and many other related languages.
I'm trying to fit a relatively simple fixed effects model with 10 parameters
(Windows machine, GNU compiler). I have fit this model with a C++ program
that I have written, and obtain reasonable results--I'm confident that the
model is OK. For that matter, I'm confident that everything in my PROCEDURE
section related to computing the negative log-likelihood is OK. I have also
verified that parameters and data are obtained correctly. ADMB obtains the
same function value for this model and these data that I have obtained with
my own program.
The problem is this: When I translate/compile/run my program with ADMB
("makeadm filename -est"), no optimization takes place. The default output
indicates that 0 iterations have occurred, and repeats my initial parameter
estimates in the default table. I wonder if someone isn't willing to take a
look and see if they can identify an issue that might be causing this?
My .tpl file is this:
DATA_SECTION
init_int ny
init_int na
init_int m
init_vector effdat(0,ny-1)
init_int teln
init_vector numtagged(0,teln-1)
init_vector numrecovered(0,teln-1)
init_imatrix dat(0,ny-1,0,na-1)
PARAMETER_SECTION
init_vector parms(0,m-1)
objective_function_value totL
PROCEDURE_SECTION
int nyears=ny;
int nages=na;
int telnyears=teln;
int fcohort[nyears][nages];
int pcohort[nages-1][nages];
int fdat[nyears+nages-1][nages];
double auxdat[nyears][nages];
int telyears[telnyears];
double auxyearsum[nyears], harvyearsum[nyears];
int i, j;
int firsttime=0;
....... log-likelihood calculations
totL=datL+auxL+telL; //yes, totL contains the negative
log-likelihood at this point
My .pin file contains:
# parms:
520.0 443.0 534.0 356.0 291.0 270.0 106.0 0.75 0.0001 0.0001
My .dat file contains:
#nyears
5
#nages
3
# parameters
10
#effort data
50 1216 1390 1673 440
#telnyears
2
#numtagged
100 100
#numrecovered
4 12
#harvest data
2 1 1
40 33 14
37 27 22
41 13 9
4 8 2
And the resulting .par file contains:
# Number of parameters = 10 Objective function value = -121.009 Maximum
gradient component = 0.00000
# parms:
520.000 443.000 534.000 356.000 291.000 270.000 106.000 0.750000
0.000100000 0.000100000
Thanks in advance for your help,
Chris Gast
University of Washington
Quantitative Ecology and Resource Management
cmgast at gmail.com
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.admb-project.org/pipermail/users/attachments/20100401/1476bf44/attachment.html>
More information about the Users
mailing list