[ADMB Users] quick, stupid question: retrieve standard errors for some parameters when bad hessian?
dave fournier
davef at otter-rsch.com
Wed Nov 2 10:17:20 PDT 2011
Anoither way to do this is to add a tiny quadratic penalty to the
original model
SEPARABLE_FUNCTION void f1(int& i,const dvar_vector& log_tau,const
prevariable & rho,const dvar_vector & bbi,const dvar_vector & beta)
dvar_vector tau=exp(log_tau);
if (i==1)
{
ll+=1.e-6*norm2(log_tau);
ll+=1.e-6*square(rho);
}
You may need to use something like
-crit 1.e-8
I have done enough simulations to see a pattern.
Laplace approx
ADMB-RE 0.12426 169 0.973034 0.159918 0.141409
lmer 0.252941 170 0.985313 0.200662 0.118773
so the type 1 error rates are approx 0.12 and 0.25
and for 5 point AGHQ
ADMB-RE 0.0666667 105 0.986444 0.129637 0.140441
lmer 0.333333 105 0.872585 0.167648 0.107097
Of course these samples are a bit small to say anything definitive.
It would be good to modify the R code so that the random numbers produced
can be controlled so that we all get the same results for the same seed.
More information about the Users
mailing list