[ADMB Users] Another sdreport mystery
dave fournier
davef at otter-rsch.com
Sat Oct 20 08:01:29 PDT 2012
this appears to be a rare example where looking at the eigenvalues of
the Hessian at
the putative solution is informative. Check the file *eva. You will
see that you have
a minimum eigenvalue around 1.e-9. If you use the -eigvec option to run
the model
you will also get the corresponding eigenvectors. Unfortunately the
format is difficult
to deal with but you can see in the second (or whatever) line the
eigenvalues in the
same order as the eigenvectors. So I think you want the 10'th eigenvector
which looks like
[1] -2.886751e-01 -2.886751e-01 2.886751e-01 2.886751e-01 2.886751e-01
[6] 2.886751e-01 2.886751e-01 2.886751e-01 2.886751e-01 2.886751e-01
[11] 2.886751e-01 2.886752e-01 -1.362096e-10 -6.788726e-10 2.781558e-10
[16] 6.526706e-10 3.567118e-10 -1.684850e-09 -2.326444e-09 1.962649e-09
[21] 9.708643e-11 -2.305247e-10 -3.908958e-10 5.738751e-08 2.368356e-10
[26] -1.728703e-10 -2.676910e-09 -1.892710e-09 3.860461e-10 1.389939e-09
[31] -4.481481e-09 -4.928454e-10 8.555867e-10 -1.641832e-09 -4.746479e-09
[36] -2.533100e-09 1.399407e-09 -1.617055e-10 -4.510348e-09 -7.339353e-10
[41] 0.000000e+00 0.000000e+00 3.687877e-10 0.000000e+00
rescaling it looks like
[1] -1.000000e+00 -1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
[6] 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
[11] 1.000000e+00 1.000000e+00 -4.718439e-10 -2.351684e-09 9.635600e-10
[16] 2.260917e-09 1.235686e-09 -5.836491e-09 -8.059040e-09 6.798814e-09
[21] 3.363172e-10 -7.985610e-10 -1.354103e-09 1.987962e-07 8.204225e-10
[26] -5.988403e-10 -9.273087e-09 -6.556540e-09 1.337303e-09 4.814890e-09
[31] -1.552431e-08 -1.707267e-09 2.963839e-09 -5.687474e-09 -1.644228e-08
[36] -8.774917e-09 4.847688e-09 -5.601642e-10 -1.562430e-08 -2.542426e-09
[41] 0.000000e+00 0.000000e+00 1.277518e-09 0.000000e+00
so it is telling yoiu that if x is your vector of parameters then
the model is almost completely insensitive to
x(1)+x(2) -x(3) - ... -x(12)
that should tell you something about the model
Also parameter 41 corresponse to the next small eigenvalue that is the
first logits value
# logits:
-28.3793844393 -8.79090361669 -2.88304855852
you get trouble with logits when the value is near -infinity or +infinity
which -28.3 is.
Be nice if someone made the -eigvec output easier to use.
More information about the Users
mailing list