[ADMB Users] Fwd: glmmADMB predict with negative binomial
jnancheta
jnancheta at gmail.com
Wed Dec 10 16:35:36 PST 2014
---------- Forwarded message ----------
From: <sheryn.olson at maine.edu>
Date: Fri, Nov 28, 2014 at 8:26 AM
Subject: glmmADMB predict with negative binomial
To: admb-users+owners at googlegroups.com
Hello, May I post a question?
I would like to plot a predictive graph of hare pellet count response vs.
conifer saplings.
It is unclear to me what predict.glmmADMB extracts when the family is
nbinom, with log-link.
The documentation says
[type Whether to return predictions on the scale of the linear predictor
("link") or the scale of the data ("response")]
Does that mean specifying type = "link" will extract exponentiated
fits?
Or do I exponentiate the fit AFTER it is extracted by predict?
R-code follows
Call:
glmmadmb(formula = pellets ~ season * t.con.splgs + offset(ln.days) +
(1 | stand/plot) + (1 | hareyr), data = hv, family = "nbinom")
AIC: 8391.6
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.67230 0.17840 -26.19 < 2e-16 ***
season[T.smr] -0.23872 0.09559 -2.50 0.01251 *
t.con.splgs 0.01686 0.00447 3.77 0.00016 ***
season[T.smr]:t.con.splgs -0.01653 0.00402 -4.12 3.8e-05 ***
and
## prepare predictive dataframe:
## Conifer saplings, wi is winter intercept
## and predict pellets based on square root transformed conifer
saplings/0.1 ha
predctCSwi <- data.frame(
t.con.splgs = rep(seq(from = min(hv$t.con.splgs),
to =
max(hv$t.con.splgs),length.out = 100),2),
ln.days=rep(log(30.25),200), ###### account for month
season = factor(rep(1:2, each = 100),
levels = 1:2, labels=levels(hv$season)))
predctCSwi <- cbind(predctCSwi, predict(wi.tconsplgs, predctCSwi, type
= "link", se.fit=TRUE))
head(predctCSwi)
t.con.splgs ln.days season fit se.fit
1 0.0000000 3.409496 wtr -1.262801 0.1784000
2 0.7142493 3.409496 wtr -1.250759 0.1784448
3 1.4284985 3.409496 wtr -1.238718 0.1785467
4 2.1427478 3.409496 wtr -1.226676 0.1787054
5 2.8569971 3.409496 wtr -1.214635 0.1789210
6 3.5712464 3.409496 wtr -1.202593 0.1791931
# Then scale up to pellets/ha/month (phm)
# and backtransform saplings to per 0.1 ha by squaring the square-root
values
predctCSwi <- within(predctCSwi, {
pellets <- exp(fit)
phm <- pellets/1.5*10000
LLha <- (exp(fit - 1.96 * se.fit))/1.5*10000
ULha <- (exp(fit + 1.96 * se.fit))/1.5*10000
con.splgs.1ha <- (t.con.splgs^2)
})
Thank you,
Sheryn Olson
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.admb-project.org/pipermail/users/attachments/20141210/64ed1ef1/attachment.html>
More information about the Users
mailing list