jnancheta jnancheta at gmail.com
Wed Dec 10 16:35:36 PST 2014

```---------- Forwarded message ----------
From: <sheryn.olson at maine.edu>
Date: Fri, Nov 28, 2014 at 8:26 AM
Subject: glmmADMB predict with negative binomial

Hello, May I post a question?

I would like to plot a predictive graph of hare pellet count response vs.
conifer saplings.

It is unclear to me what predict.glmmADMB extracts when the family is

The documentation says
[type   Whether to return predictions on the scale of the linear predictor
("link") or the scale of the data ("response")]

Does that mean specifying      type = "link"    will extract exponentiated
fits?
Or do I exponentiate the fit AFTER it is extracted by predict?

R-code follows
Call:
glmmadmb(formula = pellets ~ season * t.con.splgs + offset(ln.days) +
(1 | stand/plot) + (1 | hareyr), data = hv, family = "nbinom")
AIC: 8391.6
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept)               -4.67230    0.17840  -26.19  < 2e-16 ***
season[T.smr]             -0.23872    0.09559   -2.50  0.01251 *
t.con.splgs                0.01686    0.00447    3.77  0.00016 ***
season[T.smr]:t.con.splgs -0.01653    0.00402   -4.12  3.8e-05 ***

and
## prepare predictive dataframe:
## Conifer saplings, wi is winter intercept
##  and predict pellets based on square root transformed conifer
saplings/0.1 ha

predctCSwi <- data.frame(
t.con.splgs = rep(seq(from = min(hv\$t.con.splgs),
to =
max(hv\$t.con.splgs),length.out = 100),2),
ln.days=rep(log(30.25),200),   ###### account for month
season = factor(rep(1:2, each = 100),
levels = 1:2, labels=levels(hv\$season)))

predctCSwi <- cbind(predctCSwi, predict(wi.tconsplgs, predctCSwi, type
t.con.splgs  ln.days season       fit    se.fit
1   0.0000000 3.409496    wtr -1.262801 0.1784000
2   0.7142493 3.409496    wtr -1.250759 0.1784448
3   1.4284985 3.409496    wtr -1.238718 0.1785467
4   2.1427478 3.409496    wtr -1.226676 0.1787054
5   2.8569971 3.409496    wtr -1.214635 0.1789210
6   3.5712464 3.409496    wtr -1.202593 0.1791931

# Then scale up to pellets/ha/month (phm)
#  and backtransform saplings to per 0.1 ha by squaring the square-root
values
predctCSwi <- within(predctCSwi, {
pellets <- exp(fit)
phm <- pellets/1.5*10000
LLha <- (exp(fit - 1.96 * se.fit))/1.5*10000
ULha <- (exp(fit + 1.96 * se.fit))/1.5*10000
con.splgs.1ha <- (t.con.splgs^2)
})

Thank you,
Sheryn Olson
-------------- next part --------------
An HTML attachment was scrubbed...