<html><body style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space; ">Thanks Dave.<div>The original question was about multivariate normally distributed data. Most entries of my variance-covariance matrix are 0. Will your code for finding the inverse of a sparse Hessian work in this case?</div><div><br></div><div>my original question:</div><div>"I need to find the maximum likelihood estimates of a nonlinear model with 10 parameters. The data is multivariate normal. I've written some of the code, but then realized that I wrote it terribly inefficiently. I'm wondering, will ADMB have trouble working with a vector of length 7374 and a sparse variance covariance matrix that is 7374x7374? To get the likelihhod, it will have to invert the matrix. Is there a special function to do this?"</div><div><br></div><div>thanks,</div><div>Mollie</div><div><br><div apple-content-edited="true"> <span class="Apple-style-span" style="border-collapse: separate; color: rgb(0, 0, 0); font-family: Helvetica; font-size: medium; font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: 2; text-align: auto; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-border-horizontal-spacing: 0px; -webkit-border-vertical-spacing: 0px; -webkit-text-decorations-in-effect: none; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px; "><div style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space; "><div><span class="Apple-style-span" style="font-size: 12px; "><div>Mollie Brooks</div><div>Ph.D. Candidate</div><div>NSF IGERT Fellow</div><div>Biology Department</div><div>University of Florida</div><div><a href="mailto:mbrooks@ufl.edu">mbrooks@ufl.edu</a></div><div><a href="http://www.zoology.ufl.edu/mbrooks">www.zoology.ufl.edu/mbrooks</a></div><div><br></div></span></div></div></span><br class="Apple-interchange-newline"> </div><br><div><div>On Sep 2, 2010, at 10:31 AM, dave fournier wrote:</div><br class="Apple-interchange-newline"><blockquote type="cite"><div>Not quite sure what the original question was, but I<br>assume it was about an RE model with a big sparse Hessian.<br><br>For the spatial model example the covariance matrix is 10,000x10000<br>which is why the current code needs something like 8GB memory.<br>My new code reduces this considerably by not forming the inverse of the<br>sparse Hessian. Hopefully it can be included into the new code base.<br>As I recall it needed something like 1.5GB memory for a sparse<br>250^2 x 250^2 Hessian.<br>_______________________________________________<br>Users mailing list<br><a href="mailto:Users@admb-project.org">Users@admb-project.org</a><br>http://lists.admb-project.org/mailman/listinfo/users<br><br></div></blockquote></div><br></div></body></html>