Thanks for your reply, Dave. I see from page 29 of the ADMB-RE manual how the VCV matrix for the random effects is computed, and I believe this will be helpful when I compute Var(e_i), and, for example, Var(N3) = Var(N1*(mu_s+e_1)*(mu_s+e_2)), when I need Cov(e_1,e_2) and/or Cov(e_i, \sigma_\mu). <div>
<br></div><div>But I don't see any mention in the manual of how variability for parameters other than hyperparameters and random effects is estimated. (Perhaps I am looking in the wrong location?)</div><div><br></div>
<div>Thanks,</div><div><br></div><div>Chris</div><div><br></div><div><br></div><div><br></div><div><br clear="all"><br>-----------------------------<br>Chris Gast<br><a href="mailto:cmgast@gmail.com">cmgast@gmail.com</a><br>
<br><br><div class="gmail_quote">On Mon, Nov 15, 2010 at 1:52 PM, dave fournier <span dir="ltr"><<a href="mailto:davef@otter-rsch.com">davef@otter-rsch.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex;">
The calculation for random effects is explained in the ADMB-RE manual, although<br>
the presentation is a bit unclear at least to me and I wrote the code.<br>
Take a look at it and see if it helps.<br>
_______________________________________________<br>
Users mailing list<br>
<a href="mailto:Users@admb-project.org" target="_blank">Users@admb-project.org</a><br>
<a href="http://lists.admb-project.org/mailman/listinfo/users" target="_blank">http://lists.admb-project.org/mailman/listinfo/users</a><br>
</blockquote></div><br></div>