
It is probably better to start with the full level of generality. So let F (x, u)p(u) be
the likelihood with prior where we ignore the observed data. Here u are the random
effects and x are the fixed effects including possibly a parameteriozation for the covariance
structure of the random effects. Let g(x, u) be any smooth function of x and u. Given the
observed data we want to make inferences on the value of g(x,u), such at the probability
that g(x, u) = t. (We really mean here the probability that g(x, u) is close to t.)

Given all the misinformation about this problem on the R list, it is in fact surprisingly
easy to formulate a solution at least in principle. This solution leads to a practical solution
obtained by several applications of the Laplace approximation. The confusion seems to
arise from the fact that with empirical Bayes the random effects are integrated out so in a
sense they no longer exist. However there is no reason why we need to be restricted to the
standard empirical Bayes procedure if we are interested in the properties of a particular
function of the fixed and random effects. We can in effect tailor the estimation procedure
to the function of interest.

Consider the simple case where only one random effect is contained in the function
of interest for example g(x, u) = σu1. We can integrate out the parameters u2, . . . , un to
obtain

R(x, u1) =

∫
F (x, u)p(u)du2du3 . . . dun∫

F (x, u)p(u)du1du2du3 . . . dun

For fixed x, R(x, u1) is a probability density function for u1. Now fix a number t and
consider the probability that t − ε/2 < σu1 < t + ε/2. This is just the probability that
(t − ε/2)/σ < u1 < (t + ε/2)/σ. which is equal to εR(x, t/σ)/σ + O(ε2). Letting ε → 0
yields the probability density function r(x, t) = R(x, t/σ)/σ for the function σu1. To make
inferences about σu1 we profile over r(x, t) to get the profile likelihood P (t).

P (t) = max
{x:σu1=t}

r(x, t)

.
The general case is almost identical except that the integration is subtler. For any

fixed value of x we have a probability function for u, q(x, u) give by

q(x, u) =
F (x, u)p(u)∫
F (x, u)p(u)du

The denominator
∫
F (x, u)p(u)du can be calculated via the standard Laplace approxima-

tion we already use. For any open set Ω the probability thant u ∈ Ω is∫
Ω

q(x, u)du

We want to consider this integral for open sets of a special type determined by the function
g(x, u) for fixed x. Fix a value of t and let Ωε,t = {u : t− ε/2 < g(x, u) < t+ ε/2} Let

r(x, t) = lim
ε→0

1

ε

∫
Ωε,t

q(x, u)du
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For a fixed value of x, r(x, t) is a probability density function for t. It is r(x,t) which we
will profile over t to make inferences about g(x, u). That is the profile likelihood P (t) for
g(x, u) = t will be

P (t) = max
{x:g(x,u)=t}

r(x, t)

Of course this assumes that we can calulate r(x, t) which is impossible for most practical
problems. Instead We shall use a form of the Laplace approximation. Let

û(x, t) = max
{u:g(x,u)=t}

F (x, u)p(u)

We want to consider the part of the region in Ωε,t near û(x, t) for small ε. In the direction
∇ug(x, û(x, t)) it is very thin with width

ε

||∇ug(x, û(x, t))||
+O(ε2)

. Since ∇ug(x, û(x, t)) = λ∇uF (x, û(x, t))p(û(x, t)) for some nonzero number λ (in the
nondegenerate case) it follow that if we restrict ourselves to directions perpendicular to
∇ug(x, û(x, t)) then F (x, u) has a critical point (maximum) and we can approximate it
by its second order taylor expansion in these directions and integrate via the Laplace
approximation. To do this we need the determinant. I don’t know the best way to do this
but one can do it as follows. Start with the standard basis ei and form all the dot products
k = ∇ug(x, û(x, t))/||∇ug(x, û(x, t))||, and fi =< ei− < ei, k > k. Discard the fi with the
smallest norm so that now there are n− 1 of them.

Sij = D2
uuF (x, û(x, t))p(û(x, t))(fi, fj) for 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 1

and
Hij =< fi, fj > for 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 1

The ratio of the determinants of these matrices

||S||
||H||

is what you want (or maybe the square root of it.)
Now how does this work for only one random effect. In that cas the level set of the

function is only a point. Consider the function σuu1. the norm of the gradient is σ, so
the width is ε/σu and taking the derivative wrt ε we get 1/σu. So the gradient of the
function contains the information about the variance. Generalizing to n dimensions it
would appear that the gradient will contain the extra information to augment that gained
from the Laplace approximation in the n− 1 dimensional space.
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