[ADMB Users] gmml.admb error
Carolina Soto Navarro
carota_soto at hotmail.com
Fri Apr 1 05:24:44 PDT 2011
Hi,
I'm very new to R and gmml.admb so my apologies if my question is very basic.
I'm looking at the relationships of climatic and methodological variables
on terrestrial carnivores track counts.
I have a number of fixed predictor variables and I don’t need to include any
random variable. My response variable InTOT ( ie. the KAI (kilometric
index of abundance) of total carnivore species per 2x2 km grid) is overdispersed
so I'm trying to use glmm.admb for count data with a negative binomial distribution. However,
it requires a grouping variable which confuses me because I supposed it should
be a random variable but in my case I don´t have anyone…..so what should I have
to include as “group” variable? Anyway I tried to include the variable OBS (the
observer who carried out the track count) as my grouping variable (i.e assuming
that it could acts as a random variable) but, when I wrote my command, I got
the following error message:
Error en glmm.admb(InTOT ~
VELMEDIA + TEMP + DIASULTLL + VVienM + (1 |
: The function maximizer failed (see below for total output)
Can
anyone suggest what I need to do or what is it happening?
This
is my model command
> model1 <-
glmm.admb(InTOT ~ VELMEDIA + TEMP +
DIASULTLL + VVienM + (1 | BLOQUE),
data=CAR08, group= "OBS", family = "nbinom")
Thanks
very much for any assistance. I appreciate your time and experience.
Carolina
Error
message:
> model1 <-
glmm.admb(InTOT ~ VELMEDIA + TEMP +
DIASULTLL + VVienM + (1 | BLOQUE),
data=CAR08, group= "OBS", family = "nbinom")
1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
3 3 3 3 3 3 4 4 4 4 4 4 4 4
Initial statistics: 6
variables; iteration 0; function evaluation 0
Function value 4.1326500e+002; maximum gradient component
mag -2.8449e+001
Var Value
Gradient |Var Value
Gradient |Var Value
Gradient
1
0.0000 -2.8449e+001 | 2 0.0000
1.5435e+000 | 3 0.0000
2.0986e-001
4
0.0000 1.7579e-001 | 5
0.0000 4.1826e-001 | 6
0.0000 -2.8449e+001
- final statistics:
6 variables; iteration 3;
function evaluation 7
Function value 7.2672e+000; maximum gradient component
mag 1.2679e-007
Exit code = 1; converg criter 1.0000e-004
Var Value
Gradient |Var Value
Gradient |Var Value
Gradient
1 14.2247
9.0376e-009 | 2 -1.5435 1.2679e-007 |
3 -0.2099 1.7239e-008
4 -0.1758
1.4441e-008 | 5 -0.4183 3.4359e-008 |
6 14.2247 9.0376e-009
- final statistics:
6 variables; iteration 0;
function evaluation 0
Function value 7.2672e+000; maximum gradient component
mag 1.2679e-007
Exit code = 0; converg criter 1.0000e-004
Var Value
Gradient |Var Value
Gradient |Var Value
Gradient
1 14.2247
9.0376e-009 | 2 -1.5435 1.2679e-007 |
3 -0.2099 1.7239e-008
4 -0.1758
1.4441e-008 | 5 -0.4183 3.4359e-008 |
6 14.2247 9.0376e-009
- final statistics:
6 variables; iteration 0;
function evaluation 0
Function value 7.2672e+000; maximum gradient component
mag 1.2679e-007
Exit code = 0; converg criter 1.0000e-004
Var Value
Gradient |Var Value
Gradient |Var Value
Gradient
1 14.2247
9.0376e-009 | 2 -1.5435 1.2679e-007 |
3 -0.2099 1.7239e-008
4 -0.1758
1.4441e-008 | 5 -0.4183 3.4359e-008 |
6 14.2247 9.0376e-009
Initial statistics: 6
variables; iteration 0; function evaluation 0
Function value 1.2243387e+001; maximum gradient component
mag 6.7672e-002
Var Value
Gradient |Var Value
Gradient |Var Value
Gradient
1 14.2247
6.7672e-002 | 2 -1.5435 1.8390e-002 |
3 -0.2099 -5.2429e-003
4 -0.1758
7.9414e-003 | 5 -0.4183
-2.4791e-002 | 6 14.2247 6.7672e-002
- final statistics:
6 variables; iteration 3;
function evaluation 6
Function value 1.2242e+001; maximum gradient component mag
-8.1366e-007
Exit code = 1; converg criter 1.0000e-004
Var Value
Gradient |Var Value
Gradient |Var Value
Gradient
1 14.2081
1.0711e-007 | 2 -1.5524 4.1011e-008 |
3 -0.2073 -8.1366e-007
4 -0.1797 -5.4906e-007 | 5 -0.4061 -1.3473e-008 | 6 14.2081
1.0711e-007
Initial statistics: 6
variables; iteration 0; function evaluation 0
Function value 2.9524069e+002; maximum gradient component
mag -2.9374e+000
Var Value
Gradient |Var
Value Gradient |Var
Value Gradient
1 14.2081 -2.9374e+000 | 2 -1.5524
1.8891e-001 | 3 -0.2073
-3.3111e-001
4 -0.1797 -8.5760e-002 | 5 -0.4061
1.0238e+000 | 6 14.2081
-2.9374e+000
- final statistics:
6 variables; iteration 8;
function evaluation 12
Function value 2.9443e+002; maximum gradient component mag
-7.4780e-005
Exit code = 1; converg criter 1.0000e-004
Var Value
Gradient |Var Value
Gradient |Var Value
Gradient
1 14.4567 -7.4780e-005 | 2 -1.5598
9.0075e-006 | 3 -0.1646
-2.6415e-005
4 -0.1616
5.0054e-006 | 5 -0.5575
-6.2554e-005 | 6 14.4567 -7.4780e-005
Initial statistics: 7
variables; iteration 0; function evaluation 0
Function value 2.9442879e+002; maximum gradient component
mag 2.0682e+001
Var Value
Gradient |Var Value
Gradient |Var Value
Gradient
1 14.4567 -7.4780e-005 | 2 -1.5598
9.0075e-006 | 3 -0.1646
-2.6415e-005
4 -0.1616
5.0054e-006 | 5 -0.5575
-6.2554e-005 | 6 14.4567 -7.4780e-005
7 0.1759
2.0682e+001 |
Intermediate statistics: 7
variables; iteration 10; function evaluation 13
Function value 2.9430495e+002; maximum gradient component
mag 1.7252e-003
Var Value
Gradient |Var Value
Gradient |Var Value
Gradient
1 14.4570 -5.6520e-006 | 2 -1.5566
2.3429e-004 | 3 -0.1663 4.8452e-004
4 -0.1625
6.1462e-004 | 5 -0.5570 1.5608e-003 |
6 14.4570 -5.6520e-006
7 0.1639
1.7252e-003 |
- final statistics:
7 variables; iteration 12;
function evaluation 15
Function value 2.9430e+002; maximum gradient component
mag 9.6123e-005
Exit code = 1; converg criter 1.0000e-004
Var Value
Gradient |Var Value
Gradient |Var Value
Gradient
1 14.4570 -3.6710e-006 | 2 -1.5566 -4.7519e-006 | 3 -0.1664
7.1745e-006
4 -0.1626
1.0335e-006 | 5 -0.5573
-2.9225e-006 | 6 14.4570 -3.6710e-006
7 0.1639
9.6123e-005 |
Estimating row 1 out of 7 for
hessian
Estimating row 2 out of 7 for
hessian
Estimating row 3 out of 7 for
hessian
Estimating row 4 out of 7 for
hessian
Estimating row 5 out of 7 for
hessian
Estimating row 6 out of 7 for
hessian
Estimating row 7 out of 7 for
hessian
Warning -- Hessian does not
appear to be positive definite
Error en glmm.admb(InTOT ~
VELMEDIA + TEMP + DIASULTLL + VVienM + (1 |
:
The
function maximizer failed
Además:
Mensajes de aviso perdidos
1: running command
'C:\Windows\system32\cmd.exe /c
"C:/PROGRA~1/R/R-212~1.1/library/glmmADMB/bin/windows/nbmm.exe" -maxfn
500 ' had status 1
2: In shell(cmd, invisible =
TRUE) :
'"C:/PROGRA~1/R/R-212~1.1/library/glmmADMB/bin/windows/nbmm.exe"
-maxfn 500 ' execution failed with error code 1
Carolina Soto Navarro
JAE-Predoc. Fellowship
Doñana Biological station (CSIC)
Department of Conservation Biology
Avda. Américo Vespucio s/n
41092 Sevilla (Spain)
Tlf. 954 466 700
e-mail: carolina.soto at ebd.csic.es
http://www.ebd.csic.es/carnivoros/personal/soto/
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.admb-project.org/pipermail/users/attachments/20110401/6528911f/attachment.html>
More information about the Users
mailing list